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Abstract

The phenomenon of learning is still an open problem. The present work

performs one step towards a model of learning that is inspired by early

ideas of cybernetics and constructivism and makes use of the mathematical

formalisms of dynamical system theory and artificial neural network theory.

Homeostasis is proposed as principle of synaptic learning in recurrent neural

networks, and an analysis of stabilisation properties of the suggested neuron

model are investigated, by means of phenomenological analysis of system

dynamics.

The model of synaptic regulation is placed in a larger framework of an

artificial life approach to adaptation and cognition. It is conjectured that

the proposed mechanism of synaptic regulation, if employed in a structurally

appropriate nervous system, can realise adaptive behaviour.
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1 Preamble

The human adaptive capacity is stunning. There is much more to the phrase

“you live and learn” than one might think on the first glance. Not only that

you go to school or to university, or that you learn from mistakes you have

committed. There is much more subtle forms adaptive processes can take.

People adapt their manner and language to interlocutors. If it gets darker,

their eyes adapt to the light. If they move to another house, soon, they do

not notice anymore they have not always lived there. The longer one thinks

about the amazing amount to which our environment changes every day, the

more astonishing seems the fact, that we hardly notice these differences and

how we change with them, in order to live on. Because of its tacitness, many

prominent learning models neglect the persistent and automatic manner in

which adaptation frequently takes place. They focus instead on special

situations that are explicitly conceived as learning situations, e.g. such that

involve teaching.

The approach adopted in this work is inspired by the vision to provide a

general explanation of adaptive capacity in humans and animals. Homeosta-

sis, i.e. maintenance of an internal variable at a desired value, is proposed

as principle that underlies synaptic learning. Far from suggesting a whole

learning theory, this thesis investigates a homeostatic mechanism to regulate

neural activation in a simple neuron model. The investigation is performed

by means of phenomenological analysis of the convergence behaviour that

small networks of such neurons exhibit.

The introductory section 2 of this thesis will cover the theoretical and

motivational background of the investigations performed. It will charac-

terise the problem and will introduce the methodological and ideological

commitments made. It will specify the exact purpose of this work within

the outlined approach to learning.

The theoretical model itself will be presented in section 3. The homeo-

static neuron will be defined and some of its formal properties will be shortly
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discussed. Also, it will be specified how changes in the exterior can affect

the neurons.

In section 4, the results of the experiments are presented. Homeostatic

domains in recurrent networks of a single neuron and of a two neuron net-

work are investigated by means of phenomenological analysis of asymptotic

behaviour. Stable domains will be characterised.

The conclusion, section 5, will discuss the findings obtained. Firstly, the

results as such will be evaluated, with respect to formal advantages and

disadvantages of the model. Then, the findings will be interpreted in the

context of learning and behaviour sketched in section 2.
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2 Introduction

This section is devoted to the specification of the problem addressed in this

thesis and to the considerations that lead to the adopted approach.

Section 2.1 will start with a definition of the terms “learning” and “adap-

tation”. In section 2.2, the language of description, dynamical system theory,

and its key concepts will be introduced. The motivational and methodolog-

ical background will be provided in section 2.3, and it is explained how the

present work is intended to contribute in defining a learning theory com-

mitted to the outlined ideas. In section 2.4, the regulatory mechanism of

homeostasis is presented and integrated in the described framework. Finally,

in section 2.5, the present approach is characterised and located within the

scientific landscape.

2.1 Adaptation and Learning

Learning and adaptation are among the terms that are used most ambigu-

ously, in cognitive science and in everyday life. Intuitively, adaptation might

be understood as the noun corresponding to the verb “to adapt”, which is

used in phrases as different as e.g. “to adapt to light”, “to adapt to living

in a foreign culture” or “to adapt to the needs of another person”.

Scientifically, adaptation is normally understood in an evolutionary sense,

e.g. the MIT Encyclopaedia of the Cognitive Sciences defines (biological)

adaptation as “a trait whose form can be explained by natural selection”

([20], lemma “Adaptation and Adaptationism” by Paul Griffith), although it

is pointed out that non–evolutionary usages of the term ”adaptation“ exist.

This definition obviously does not capture the various colloquial meanings

listed above.

The same dictionary defines “learning” as a “change in an organism’s ca-

pacities or behaviour brought about by experience” ([20], lemma “Learning”

by Daniel Reisberg). It is admitted that this definition does include phe-

nomena which are normally not considered as learning, such as increases in
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muscular strength due to exercise. Another problem with this definition is

that some behavioural changes, such as development of psychoses, can very

well be brought about by experience, but would hardly be called “learning”.

Apparently, learning somehow includes a notion of a rise in “quality”. Also

it is questionable, what “experience” is supposed to be. If a person expe-

riences the injection of steroids and is hence able to run faster, this would

probably neither be considered an instance of learning. In order to be called

learning, behavioural changes have to be attributable to the learner itself,

in a way.

There is not much sense in further stressing the fuzziness of these and

other related terms by providing more problematical definitions. Instead

I will give my own working definitions, which are perhaps not universally

applicable, but they roughly comply with the intuitive grasp of the notions

and suffice the current needs of distinctiveness and accuracy.

Paying tribute to the colloquial usage of the term, adaptation will be

understood as a general term to subsume changes that lead to rise in evolu-

tionary fitness in agent behaviour. The reliance on fitness gives the required

measure of quality. Since this work will not be concerned principally with

issues of fitness, this term will be maintained as vague as it is. The evolu-

tionary adaptation of populations across generations, as outlined above, will

be explicitly referred to as biological adaptation. Increase of fitness within

a single individual will be called behavioural adaptation, if it is triggered by

external changes, but is realised by an intrinsic change of the individual.

Such underlying changes themselves will be called self–adaptation. Self–

adaptation and behavioural adaptation together will be called learning, since

they are just two sides of the same coin. Obviously, this definition does not

agree with definitions that consider learning as a “high level” process. For

instance, changes in muscular strengths, as described above, are embraced

by the given definition.

How these natural language definitions are interpreted formally will be
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addressed later on in this work.

2.2 Dynamical System Theory

The model proposed in this thesis will be specified in the terms of dynamical

system theory. The formal language of dynamical system theory qualifies for

the description of adaptive processes, because it focuses on changes across

time that are essential to adaptation. This section will give a brief and

semi–formal introduction to the key ideas and terms of dynamical system

theory that the reader will encounter in this thesis (compare [14],[19],[3]).

The theory of dynamical systems is centred around the notion of a state.

A state x of a system is a set of system quantities that allows the complete

description of the system’s development across time. Formally, a state is a

variable assignment to a set of variables, the so called state variables of a

dynamical system. If a dynamical system is supposed to explain an actual

dynamical process, the state variables have to correspond to measurable

quantities. The space of possible assignments of values to state variables

is called the state space (or phase space) M of the dynamical system, the

number of state variables is called its dimension d.

Dynamical systems can either be given as a set of ordinary differential

equations or as a set of difference equations. The former model the develop-

ment of a dynamical system time–continuously, while the latter describe the

development of a dynamical system in discrete time steps. In this thesis,

only time–discrete modelling will be employed, and the following terms will

be explained as they account for time–discrete dynamical systems.

A difference equation is an equation of the following kind:

x(t + 1) = f(x(t))

where x is a system state, t denotes the time and f(x) is a map M 7→ M .

The state x0 a system is in at time t0 = 0 is called the initial condition,

its development across time is computed by iterated application of f to x0.
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Let f1(x(t)) = f(x(t)) = x(t + 1) and fn(x(t)) = fn−1(x(t + 1)), ∀n ε N.

The sequence of states x0, x1, . . . xn a system traverses when being iterated

is called an orbit or a trajectory.

If for a state x∗ εM it holds that f(x∗) = x∗, x∗ is called a fixed point

of the system, or a trivial orbit. If a system returns to a state x∗

1 after a

finite number n of system iterations, i.e. f n(x∗

1) = x∗

1, the traversed states

x∗

1, x
∗

2, . . . , x
∗

n are called periodic points of the system. Such a cyclical orbit is

called a periodic orbit, and the minimum number n for which this condition

holds is called the period of the orbit. Trivial and periodic orbits are kinds

of invariant sets. Invariant sets are sets of states I ⊂ M in which orbits

remain for all future times. Other kinds of invariant sets are circles or fractal

sets on which orbits are lying dense. Orbits that remain either on circles or

fractal sets are called quasi–periodic orbits or chaotic orbits respectively.

Invariant sets can be unstable, stable or asymptotically stable. An in-

variant set I is called stable, if there exists a neighbourhood I ′ of I such

that orbits of states x′ ε I ′, remains in this neighbourhood I ′ for all fu-

ture times. Otherwise, it is called unstable. If the orbits of neighbouring

states x′ ε I ′ additionally converge to the invariant set I for all future times,

the invariant set I is not only stable, but even asymptotically stable. The

stability of invariant sets can be determined by graphical or mathematical

analysis. Asymptotically stable invariant sets are called attractors of a dy-

namical system. They are called fixed point attractors, periodic attractors,

quasi–periodic attractors or chaotic attractors respectively. The set of states

B ⊂ M , whose orbits converge towards an attractor are called the basin

of an attractor, the converging orbits themselves are called the transients

of an attractor. The attractors are an important qualitative property of a

dynamical system, and they will be in the centre of interest here.

A system is globally stable if all system states x εM converge to a single

attractor, it is multistable if it has more than one attractor. A convergent

(dynamically trivial) dynamical system is one that has only fixed point at-
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tractors. A dynamical system is called an open system if it interacts with

the environment, otherwise, it is called a closed system.

Apart from state variables, a system can have control parameters r, which

change on a larger time scale than the state variables, i.e. in between control

parameter changes, a system is left time to converge to an attractor. Control

parameters define a parametrised set of different dynamical systems.

2.3 Methodological and Ideological Background

The approach taken in this thesis involves a number of methodological and

ideological commitments, out of which the choice to model a learning agent

as dynamical system is one. The principle to study learning in situated and

embodied models is adopted, as well as the paradigm of artificial neural

network theory. The considerations and observations that lead to these

commitments will be explained in this section.

The cyberneticist Ross Ashby gave a definition of the learning problem,

which will serve as guideline in doing so:

“What cerebral changes occur during the learning process, and

why does the behaviour usually change for the better?” ([1], p. 4)

The first thing to notice is the noun phrase “cerebral changes” in Ashby’s

first question. There is very little doubt that behavioural changes in humans

and animals are usually realised as cerebral changes. Straight forwardly, this

implies that modelling learning corresponds to modelling neural plasticity

within the nervous system. It is not denied that behavioural modelling on a

more abstract level of description is valid, but in this thesis, it will be stuck

closer to the physical correlate of cognitive processes in biological agents.

Still, it has to be stressed that is not intended to give a biologically plausible

model of the brain or of a neuron. The assumption presupposed in the theory

of artificial neural networks is adopted, that relevant to the constitution of

a human’s or an animal’s behaviour is primarily the architectonic feature of

the brain to be composed out of a large number of interconnected simple
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units (neurons) that simultaneously transduct signals (compare [10] p. 55f).

Also, the present approach subscribes to the idea first uttered by Donald

Hebb that learning is realised as changes in the efficacy of synapses (compare

[21], p. 18).

Another characteristic of Ashby’s definition that should be noticed is

that it is composed out of two questions. The first question, “What cere-

bral changes occur during the learning process” translates to the problem of

self–adaptation, while the second question, “why does the behaviour usually

change for the better?” corresponds to the problem of behavioural adap-

tation. As stated in section 2.1, these problems are just two sides of the

same coin: You cannot tear them apart, but still, you have to flip the coin

in order to see the other side.

In order not to confuse these two questions, it helps to take different

stances when approaching them. While being concerned with the second

question, why behaviour improves, it is reasonable to take the classical “cog-

nition as information processing” stance, in which an agent is seen as having

sensors, effectors and in between a computational (oftentimes called “cog-

nitive”) device that causally links them. From that perspective, notions of

behaviour, input, output and fitness can be established, with respect to the

environment the agent is located in. It is important to see that notions like

fitness and behaviour depend on the environment in which an agent inter-

acts, since this brings in the commitment to situated and embodied study

of cognition. An agent is embodied, if it has defined sensory and effectory

systems, it is situated, if it is integrated in a closed sensorimotor–loop1. If

and why self–modification of an agent yield improved fitness of behaviour

depends on the environment an agent is in and how it affects and is affected

1Closure of the sensorimotor–loop means that causal relations between inputs and

outputs are determined both internal and external to the agent. E.g. in a simplified

example, if a ringing phone makes my arm move to pick it up, this is an internal causal

connection. But that the ringing then ceases, which I perceive via my sensors, is an

external causal connection
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by the agent.

On the other hand, in order to answer the first question, it might be help-

ful to leave the “cognition as information processing”–stance in favour of a

more relativist one. The Chilean constructivist Humberto Maturana pro-

posed to view the nervous system as “a closed system”2 that “generates only

states [. . . ] of relative activity between its component neurons” ([9], p.35)

instead of relations between inputs and outputs. This view does not mean

to deny that there is a causal connection between the nervous system and

its environment, it only points out that labelling certain surface components

of the system “input sensors” or “output effectors” is not the denomination

of intrinsic system properties, but an interpretation by the observer. Such

interpretations are always based on certain assumptions about the environ-

ment in which an agent interacts (or will interact). Restricting one’s view

to the system internal dependencies, i.e. neglecting external closure of the

sensorimotor loop, helps in answering the first question, because it impedes

violation of the constraint that adaptive changes shall be system intrinsic.

But even if Maturana’s internal view of the system is adopted, it is impor-

tant to allow perturbation of the system, because otherwise there would be

no way to detect environmental changes, to which an agent is supposed to

adapt. The learning system can hence not be a closed system in the strict

sense of dynamical system theory (compare section 2.2).

The modelling of a situated adaptive agent as dynamical system suggests

itself, because dynamical system theory, as explained before, qualifies for

describing the development of a system across time. Paying tribute to the

hypothesis of neural network theory, the state variables will be those neural

properties that are assumed to be involved in signal transduction (compare

section 3.1). The constraint that adaptive changes should be intrinsic trans-

lates to the formal demand that their dynamics shall be specified within the

system.

2“closed system” in this context is not equivalent to the term introduced in section 2.2

on dynamical system theory.
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Changes in the exterior will be realised as parameter changes, i.e. they

are expected to take place on the time scale of control dynamics, such that

the system can settle in an attractor in between environmental changes.

Pasemann ([12], p. 197, [14], p.12) outlines how in such a scenario the

attractors of a system could correspond to different functional modes of the

brain. In that framework, the basins of attractors define classes of different

system states leading to one behavioural mode. Taking that point of view,

learning can be seen as trajectory in the dynamics of synaptic weights, that

takes place on the time scale of control dynamics.

Within the just outlined approach to learning, this thesis covers only a

very limited part. It is concerned with the proposal of homeostasis (see

section 2.4) as regulatory mechanism that realises synaptic learning, on the

basis of internal values, an idea that is to be attributed to Pasemann (per-

sonal communciation). But it will be restricted to specifying and analysing

a homeostatic neuron model, in order to see whether and how it is promis-

ing to be applicable in a theory of synaptic learning. Behavioural issues,

i.e. an answer to Ashby’s second question, will not be addressed at all. The

proposed model is far from being a learning model itself, it is just a first

step on the way to one.

To give a prospect on how the second question could be answered: The

long term vision is to employ the homeostatic neuron model (or an im-

proved variant) in artificial evolution, to evolve adaptive robot controllers

in simulated environments. Artificial evolution is a programming technique

in which so called “evolutionary algorithms” mimic the process of biological

evolution (compare e.g. [15]).

2.4 Homeostasis

Homeostasis is a mechanism of self–regulation. The purpose of a homeostatic

mechanism is to maintain a variable as close as possible to a certain desired

value. In this thesis, it is conjectured that the principle, on which synaptic
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learning is based, is homeostatic maintenance of a target neural activation

level. A closer explanation of the term “homeostasis” and how it is included

in the approach to learning outlined so far will be performed in this section.

Homeostasis is originally a physiological term, the name was introduced

by Walter Cannon in 1932, but the mechanism of maintenance of an inter-

nal milieu in spite of environmental changes has been known even before

(compare [8], p. 961f). A popular example of homeostatic regulation is

the regulation of body temperature, which is successfully maintained at ap-

proximately 37◦ in human beings. This example serves also to introduce

the negative feedback loop, i.e. “increased effectiveness of the factor or the

factors that resist the change” (Shannon, quoted in [8], p. 962), which is

the key mechanism of homeostatic regulation: If it is hot, the body sweats

in order to cool down, if it is cold, shivering warms the body up.

What makes homeostasis a good candidate for the present purpose is the

fact that it promotes a stable state, which meets well with the idea of synap-

tic weights settling in fixed point attractors. Also, it is an internal regulatory

mechanism that does not rely on any presuppositions about external factors,

such as reinforcement (see discussion on learning principles below). Empir-

ical support comes from neuroscientific findings on homeostatic regulation

in biological cells (compare e.g. summaries in [17] and [6]). Another appeal

of homeostasis is the simplicity of the principle, since it centres around a

single variable.

Proposing homeostasis as regulatory mechanism that underlies adaptive

behaviour is not at all an innovative proposal. It has been popular in the

days of cybernetics, e.g. in his book “Design for a Brain” from 1954 [1], Ross

Ashby suggests that animals should be seen as homeostats that “maintain

the essential variables within physiological limits” ([1], p.57), where essential

variables are considered to be variables such as pulse and body temperature,

that are directly linked to survival.

An important observation by Ashby is that a homeostatic mechanism
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“promotes, but does not guarantee, survival” ([1], p.65), because some en-

vironmental changes might be just too drastic to be regulated. This does

not contradict the principal adaptive capacity that a homeostatic regula-

tory mechanism can provide. Actually, a homeostat will even be required to

have a limited homeostatic domain, if it is supposed to model a biological

organism, because otherwise, the system modelled would be immortal.

This thesis proposes neural activation as a variable that a neuron aims

at maintaing stable at a certain target value, by means of adjustment of

synaptic weights. Single neurons are considered as autonomous entities that

self–regulate locally. Neural activation is not considered as an essential

variable in the Ashbyan sense, i.e. loss of homeostasis is not associated with

cell death.

Homeostatic adjustment as such cannot be guaranteed to realise learning.

It depends on the sensorimotor–loop in which an agent is situated, whether

an internal homeostatic mechanism benefits fitness of behaviour. In order

to make a system adaptive, homeostatic mechanisms have to be set up in a

purposeful way that suits the environmental conditions.

2.5 Related Work

This section will be devoted to a comparison of the outlined approach to

learning with others, to point out in how far they are similar or different.

It will begin with a short discussion of general types of learning theories,

and will then go on with a comparison to research that heads in a similar

direction.

A prominent classification of learning systems is the distinction between

models of supervised learning, unsupervised learning and reinforcement learn-

ing made in the theory of machine learning and in the theory of artificial

neural networks. Supervised learning is inspired by the idea that a system

learns from a teacher (hence supervised). Technically, a supervised learner is

one that has a feedback channel providing it with the percept of the output
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it should have produced. A similar approach paying tribute to the idea that

frequently there is no unique “correct” response is reinforcement learning,

in which a learning system is provided with an evaluation measure (rein-

forcement) of its output, rather than with a certain correct output pattern.

Technically, “drawing the line between supervised and reinforcement learn-

ing is somewhat arbitrary”([18], footnote p. 528), because a reinforcement

stimulus can be seen as a “less informative feedback signal” ([18], footnote

p. 528). Both paradigms rely on the idea that external evaluation triggers

self–adaptation. A learning system that does not receive an external feed-

back signal about the correctness of its outputs is called an unsupervised

learning system. In unsupervised learning, a system adapts “solely on the

basis of its intrinsic connections and dynamics” ([4], p.283), a process that

is oftentimes called self–organisation. (compare [18], [4], [21])

Supervised and reinforcement learning systems normally learn in an “off–

line” training phase from a set of supposedly representative examples. After

this training phase, a system is tested on accuracy with another set of ex-

amples, and if it performs well, it is maintained the way it is and applied

to problems of the learned type. The scientific question addressed in these

approaches is normally whether an algorithm can approximate a certain

mapping from input patterns to output patterns. These techniques are use-

ful to generate systems to perform in specific domains in which a correct

mapping from inputs to outputs exists, such as game playing or pattern

recognition. But they do not qualify for modelling learning in an agent that

is exposed to an ever changing environment, to which it needs to adapt

autonomously and on–line, as it is the case in biological organisms.

Another important property of learning theories is whether they presup-

pose context–sensitivity (or state–sensitivity) of behaviour. An assumption

closely linked to the one that learning is functional approximation is that

a specific sensory input pattern should be mapped uniquely to a specific

output pattern. This claim is not adequate, since agents sometimes are bet-

16



ter off if their actions are chosen sensitive to internal states, in which past

experiences can be reflected3.

This implies that the neural network model implemented has to allow

recurrent connections, since feed–forward networks, i.e. networks that only

transduct signals in one direction, are known to be context–insensitive ([18],

p.570). The term “recurrent” is frequently used to refer to self–coupling in

neurons, but here it will account for all kinds of feed–back (or recursive)

connections, i.e. connections that lead to a cycle in network connectivity.

Recurrent networks can, other than feed–forward networks, exhibit non–

trivial dynamics (compare [14], p. 14f).

Among the theories and approaches to explain learning, there are many

that are related to the one adopted in this work.

One example is the homeokinetic principle investigated by Der and his

group (compare e.g. [16], [5]): They employ robots with a homeokinetic con-

trol mechanism, in which output patterns are opposed to feedback patterns

of actually expected outcomes. The feed–back patterns are derived directly

from sensory input, such that their robots controllers can be placed in the

realm of unsupervised learning systems, in spite of superficial similarities

to supervised learning approaches. Their work is not a competitive ap-

proach to the one sketched here, since the homeokinetic principle describes

self–regulation on a different level of description, i.e. not with reference

to a single variable. It is imaginable that homeokinetic regulation is locally

based on homeostatic principles, or, the other way around, that homeostatic

networks implement homeokinetic adaptation.

A very related approach that of DiPaolo and his group (compare e.g.

[6], [2]). They investigate adaptation in agents controlled by networks of

3As an example, consider the protagonist in the movie “Memento” who suffers from

hippocampal amnesia: He finds himself in a situation where he and another man are

running over a parking site. From the mere percept he concludes that he is chasing the

other man, while actually, it is the other way around. His malfunction in memory could

be seen as a loss of context–sensitivity of behaviour.
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homeostatic neurons. In spite of the similar theoretical background to their

research, they have another emphasis: They model adaptation to sensori-

motor disruptions (such as the adaptation to wearing goggles that invert

the visual field) on the behavioural level. Concerns of underlying neural

dynamics are not in the focus of their interest. Their findings provide fur-

ther support for the hypothesis that the homeostatic neuron model can be

employed to realise adaptive behaviour.

Reimann (compare e.g. [17]) investigates dynamical properties of homeo-

static neurons from the viewpoint of theoretical neuroscience: His main aim

is to explain the homeostatic mechanisms observed in biological brains and

the system stability it promotes, whereas its functional role in the adapta-

tion of behaviour is only addressed in the margin.

Although this thesis itself will not be concerned with behavioural issues

neither, the approach in which it is embedded could be located in between

the ones represented by DiPaolo and Reimann respectively: Other than in

DiPaolo’s work, it is aimed at explaining processes on a sub–behavioural

level, while still, functional role is considered more crucial than biological

plausibility, which delimits the approach from Reimann’s.
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3 The Theoretical Model

Based on the ideas developed so far, this section will introduce the homeo-

static neuron model. Section 3.1 will be concerned with the formal definition

of the neuron and the network, while section 3.2 will treat the representation

of external disruptions of the system, that is adapted to.

3.1 The Neuron and Network Model

The neural network is modelled as a time–discrete dynamical system. Time–

discrete modelling has been chosen because it can be assumed that the ob-

served dynamical properties exist as well in corresponding time–continuous

dynamical systems, but it is easier to simulate (compare [12], p.196). A neu-

ron is defined as a three–dimensional dynamical system, with state variables

a, ξ, η and a state x defined as triple x :=<a, ξ, η>. The state variables will

be indexed with a subscript i for neuron ni, i = 1, . . . , N in a network of N

neurons. ai is considered as the activation level of a neuron. ηi and ξi can

be roughly interpreted as the transmitter level and the receptor level of a

neuron.

The activation level ai is assumed to be the essential variable to be reg-

ulated homeostatically, as outlined in section 2.4. This implies that the

system is supposed to have a fixed point attractor x~

i =<a~

i , ξ~

i , η~

i >, such

that a~

i is the target activation value.

The connectivity structure in a network of N neurons is given by a N×N

connectivity matrix C. The entries are cij = 1 if there is a connection

from nj to ni and cij = 0 if there is none. All possible connections are

allowed. It is deliberated that recursive projections, i.e. those leading to

cycles within the connectivity, occur, in order to make non–trivial dynamics

possible (compare [14], p. 14).

The strength of a synapse wij from neuron nj to neuron ni is defined as

wij(t) = cij · ηj(t) · ξi(t) (1)
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Hence, it is the dynamics of ξi and ηj that realise learning.

The activation level of a neuron is simply defined as the sum of the

synaptic inputs and a constant bias term:

ai(t + 1) = θi + ξi(t) ·

N∑

j=0

(cij · ηj(t) · σ(aj(t))) (2)

where σ is the standard sigmoidal

Figure 1: The standard sigmoidal output

plotted against the neural activation. The

target activation levels ±a~ are marked.

transfer function σ(a) = 1
1+e−a (see

figure 1). It is interpreted as an ide-

alised approximation of the average

firing rate in the postsynapse of a neu-

ron. θi is a constant bias term.

There are many possible and plausi-

ble ways how to choose a~

i , the target

activation value of a neuron. Here it

is assumed that either a~

i = +1.31696

or a~

i = −1.31696 for all neurons ni.

It will be referred to these values as

+a~

i and −a~

i respectively. These two values were picked because they have

the maximum “non–linearity” in the sigmoidal transfer function, i.e. they

satisfy σ′′′(±a~

i ) = 0. This choice was made because, if the system achieves

homeostasis, it operates at a point where slight variation of the activation

level leads to a substantial variation in slope of σ(ai(t)). If a neuron remains

at such a point, rich and versatile dynamics are probable4. The correspond-

ing output rates are σ(+a~) ≈ 0.79 and σ(−a~) ≈ 0.21.

The equations for the transmitter and receptor levels, ηi and ξi, are

the equations realising changes in synaptic weight. Although, as has been

stressed earlier, the homeostatic neuron is not guaranteed to implement

learning, for convenience, the adjustment of synaptic weights will be re-

ferred to as learning of synaptic weights.

4The same strategy is e.g. exploited in audio amplifiers to cause distortion effects.
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The equation for ξi is designed in order to achieve homeostasis, i.e. to es-

tablish a fixed point attractor x~

i =<a~

i , ξ~

i , η~

i > in the dynamical system,

such that a~

i is the target activation level.

The equation for ηi is more inspired by Hebbian ideas of an increase in

synaptic efficacy upon persistent stimulation. Both equations are designed

obeying “Dale’s law”, that says that a neuron has the same combination

of transmitter substances in all its synapses (compare [7], p.214), which

implies that the outgoing synapses of a neuron are either all inhibitory or

all excitatory in effect. This property is realised in the present approach by

fixing the sign of ηi in a neuron and by maintaining ξi strictly positive.

The difference equation for the receptor level is given by

ξi(t + 1) = ε + ξi(t) · (1 + β · (a~

i − ai(t)) · sign (ai(t) − θi)) (3)

where β is a learning parameter 0 < β < 1. The receptor potential was

intended to be strictly positive, in rare cases where it could drop below 0

(β · (a~

i − ai(t)) < −1), it is maintained artificially at 0. This drawback led

to the consideration to delimit the amount of change in ξi in future models

(compare section 5.1). The change in receptor level is computed taking into

account the difference (a~

i − ai(t)), which indicates, if and to what amount

the activation has to be increased or decreased, and with respect to the sign

of the net–internal input (ai(t) − θi) that indicates, whether an increase or

decrease of receptor level leads to the desired outcome. ε is a small real

number (ε = 10−5, in the present experiments) that prevents the receptor

level from being trapped if it once decreases to 0. It is not assumed to

relevantly contribute to the determination of synaptic weights, and will be

neglected in the below computations. The receptor level does not saturate.

The difference in the receptor potential ∆ξi(t) := ξi(t + 1) − ξi(t) in a

neuron ni is given by

∆ξi(t) = β · ξi(t) · (a
~

i − ai(t)) · sign (ai(t) − θi) (4)

The transmitter level ηi is varied depending on the stimulation of the cell.
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A neuron has a fixed sign of output. The transmitter level is defined as

ηi(t + 1) = (1 − γ1) · ηi(t) + sign (ηi) · γ2 · σ(ai(t)) (5)

γ1,2 are learning parameters 0 < γi < 1. (1 − γ1) can be interpreted as a

decay term, γ2 · σ(ai(t)) is an increase in transmitter level triggered by the

activation of the neuron. The transmitter level does neither saturate.

The difference in transmitter level ∆ηi(t) := ηi(t + 1)− ηi(t) in a neuron

ni is given by

∆ηi(t) = −γ1 · ηi(t) + sign (ηi(t)) · γ2 · σ(ai(t)) (6)

The difference in synaptic weight ∆wij(t) := wij(t+1)−wij(t) in a synapse

with cij = 1 is then given by

∆wij(t) = ηj(t + 1) · ξi(t + 1) − ηj(t) · ξi(t) (7)

= − γ1 · ηj(t) · ξi(t) (8)

+ γ2 · sign (ηj) · σ(aj(t)) · ξi(t)

+ sign(ai(t) − θi) · sign(ηj) · (a
~

i − ai(t))

·β · ξi(t) · ((1 − γ1) · |ηj(t)| + γ2 · σ(aj(t)))

The three addends making up ∆wij(t) identified in equation (8) display the

different factors taking part in the determination of synaptic weight. The

first one is very easy to identify, it denotes a general decay in |wij |. The

second one is a roughly hebbian term, it reflects growth of |wij |, depending

on presynaptic activation and receptor density in the postsynapse. The

third term is the one that promotes homeostasis. The product of the two

sign terms is 1 in the synapses that were dominant in the determination

of the sign of the summed synaptic input (sign(ai(t) − θi)) at time t. The

adjustment of synaptic weights is then directed by the term (a~

i − ai(t)):

If ai(t) has been lower than desired, the synaptic weight is lifted, if it was

higher, it is lowered. Synapses with a reverse sign of input (sign(ηj) =

−sign(ai(t) − θi)) are adapted in a counterproductive way, which can be
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explained by the fact that receptor levels in a neuron ni have to be adjusted

globally for all its incoming synapses. The amount of change in this addend

is biased with the absolute synaptic strength and presynaptic activation.

The dynamical analysis will be employed to show that a single self–

coupled neuron is homeostatic for some parameter settings, i.e. that there

is a fixed point attractor x~

i εM such that the target activation level a~

i is

a component of that fixed point. In the following it will be argued that if

the target activation level is maintained homeostatically, the other system

variables are stationary too, i.e. stability on a~

i guarantees a system fixed

point x~

i =<a~

i , ξ~

i , η~

i >. Furthermore, dependencies of a~

i ,ξ~

i and η~

i on

each other and on the network parameters will be analysed.

For the receptor potential it is true by definition that

ai(t) = a~

i ⇒ ξi(t+1) = ξi(t), if the auxiliary term ε is neglected. Unlike a~

i ,

ξ~ is not one fixed value for all possible situations, but depends on synaptic

inputs and system parameters. Let I
syn
i (t) :=

∑N
j=0(cij ·ηj(t) ·σ(aj(t))), the

sum over the synaptic inputs to a neuron ni. If a network is stationary and

is not distorted by external changes (i.e. I
syn
i is constant), the fixed point

component ξ~

i of the receptor level is given by

ξ~

i =
a~

i − θi

I
syn
i

(9)

ξi(t) converges towards ξ~

i as ai(t) converges to a~

i . It should be noted

that ξ~

i , according to this equation, would have to be negative for some

parameter settings. The parameter domains in which this is the case are

those domains in which self–regulation is in principle impossible, of course

the receptor level does not drop below ξi = 0. The point at which ξ~

i = 0

will be referred to as the natural limit of homeostasis.

Given ai(t) = a~

i and ξi(t) = ξ~

i are stationary, ηi also has to be station-

ary on a fixed value η~

i , if the synaptic inputs and system parameter stay

the same. Indeed, there is one fixed point η∗

i for all stationary states a∗

i of

the activation level, be they target activation or not. η∗

i depends sigmoidally
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on a∗i , scaled by the relation between the learning parameters γ1 and γ2 and

its own sign (inhibition or excitation).

η∗i (a
∗

i ) = sign (ηi) ·
γ2

γ1
· σ(a∗i ) (10)

If ai is stationary at some value a∗

i , ηi converges to η∗i (a
∗

i ). The η-component

of the system’s target fixed point x~

i will be referred to as η~

i = η∗i (a
~

i ).

It has been decided to fix the relation γ1

γ2
, such that the relation between

η~

i on a~

i does not change in between experiments. Let γ2

γ1
:= 2. With this

choice, if the neuron is not activated at all, i.e. ai(t) = 0, it fires with an av-

erage output rate of σ(0) = 0.5. The corresponding fixed point of the trans-

mitter level is normalised at |η∗

i (σ(0))| = 1. At a maximum stable synaptic

output of σ(±∞), the transmitter level has fixed points |η∗

i (−∞)| = 0 or

|η∗i (+∞)| = 2, respectively. Although these dependencies only hold for sta-

tionary activation levels of the system, it is assumed that the absolute values

of the transmitter level |ηi(t)| in most settings will not substantially exceed

the interval [0, 2]. According to equation (10), the fixed point component

η~

i result in |η~

i (+a~

i )| ≈ 1.58, and |η~

i (−a~

i )| ≈ 0.42 respectively. It is not

necassary to specify both, γ1 and γ2 in the experiments, if their relation

is fixed. For convenience, only γ1 will be defined, the subscript 1 will be

omitted, i.e. γ1 := γ, γ2 := 2 · γ.

The convergence to ξ~

i and η~

j is accompanied by a convergence of wij

to

w~

ij = η~

j · ξ~

i = sign(ηj) · 2 · σ(a~

j ) ·
a~

i − θi

I
syn
i

(11)

3.2 External Input

As discussed in section 2.3, there has to be a way how the environment takes

influence on the system state, and this environmental effect is supposed to

change on the time scale of control dynamics. Since the neuron model

is supposed to homeostatically maintain a target activation value a~

i , it

is reasonable to model environmental disruptions such that they affect the
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activation level. As has been anticipated in section 2.3, environmental inputs

are supposed to change on the time–scale of control parameters, i.e. they

parametrise a family of dynamical systems.

In the introduced neuron model, there is at least two ways how to induce

external distortive input: Directly or via other neurons. Formally, these

variants yield the following difference: Direct input can be set against the

bias term θi, i.e. θ′i := Iext + θi is varied. In the experiments where direct

induction of inputs is investigated, θ ′i will be simply referred to as θi. Neu-

ronal inputs operate via additional addends in the summed synaptic input

I
syn
i (t). In this set–up, the sum of outputs of a group of k neurons o0 will

be varied. Let o0 :=
∑k

j=0(cij · ηj(t) · σ(aj(t))), the external synaptic input

to a neuron ni.

There is a crucial difference between these two options: In the case of

distortion via synapses, the neuron has means to directly regulate this input

by adjustment of ξi. If activation is induced directly in the cell, the neuron

can only compensate for distortion by means of regulation of the net–internal

input.

Both of the variants have advantages and disadvantages: Direct input

decreases system complexity, because of the reinterpretation of θi, but on

the other hand, it is questionable, why input from the exterior, other than

net–internal input, should not be directly regulatable. This work will take

into consideration both models.

Recapitulating section 2.4, a homeostat ought to have a limited space

of environmental circumstances in which it achieves to regulate. For the

single autonomous neuron, this demand translates to the demand to find

and characterise an interval of external inputs, in which x~

i is a fixed point

attractor of the system, and enclosing intervals in which it is not. The

analysis of networks of several coupled homeostatic neurons is performed in

order to characterise network attractors and their stability domains in the

parameter space.
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4 Results

The investigation of neural dynamics will be restricted to very small net-

works, i.e. to a single neuron and networks of two neurons with mutual

coupling and all possible variants of self–coupling.

Section 4.1 will introduce the investigatory tools employed and how the

diagrams have to be read. Section 4.2 will present findings on dynamical

properties of corresponding hard–wired neural networks, since dynamics in

stable intervals are likely to obey the regularities found there. In section

4.3, equation (3) and equation (5), will be investigated independently, in

order to understand their effects in synaptic regulation. The single neuron

network will be treated in section 4.4, while section 4.5 will deal with two

neuron networks in different possible set–ups. Section 4.6 will sum up the

findings obtained.

4.1 Employed Methods

As already explained, the focus of investigation will be on attractors and

asymptotic behaviour of the system upon variation of an external input. The

analysis will be primarily a phenomenological one, evaluating bifurcation

and attractor diagrams (see below), although sometimes it will be referred

to mathematical findings.

In bifurcation diagrams (e.g. figure 2), a system variable x is plotted

against a control parameter r, that is slowly increased or decreased. After

the system has been left time to relax, a number of successive values of x

is plotted, visualising the attractor the system has converged to. Typically,

there are intervals of r, in which the system has attractors that are qual-

itatively equal. The limits of such intervals are called bifurcation points.

Bifurcation diagrams exhibit characteristic patterns that display attractors

and bifurcation points of a dynamical system. Figure 2 shows an interest-

ing bifurcation diagram of neural output that depicts a variety of different

attractors, with bifurcations points marked as ti (bifurcation points will al-
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ways be marked this way). Intervals of r, in which lines appear, represent

intervals in which the system converges to a fixed point attractor (if it is

one line) or a period n attractor (if there are n different lines). Quasi–

periodic and chaotic attractors occur in bifurcation diagrams as regions in

which plotted states do not form lines, but remain dense (e.g. 2, [t2, t3],

the area that looks shaded on the first glance). To determine whether an

attractor is chaotic or quasi–periodic, it is oftentimes necessary to employ

mathematical analysis, for instance calculation of the Liapunov–exponents,

or to closer investigate specific orbits.

Coexistence of attractors cannot be

t1 t2 t3 t4

Figure 2: Example bifurcation diagram
for the output of a self–coupled neu-
ron upon variation of θi, with hysteresis:
For increasing θi, the system has a fixed
point attractor ([0, t2]), a chaotic or quasi–
periodic attractor ([t2, t3]), a period 8 at-
tractor ([t3, t4]) and a period 3 attractor
([t4, 2]). For decreasing θi, the system is in
the period 3 attractor throughout the in-
terval [t1, 2], then the system jumps to the
fixed point attractor ([0, t1]).

displayed, if bifurcation diagrams are

employed as outlined so far, since com-

putation follows a single orbit. If the

control parameter r is first increased

and then decreased, and the outcome

is plotted in the same diagram, co-

existent attractors can be detected.

A special situation in which attrac-

tors coexist is the so called hysteresis

effect, a type of irreversible change:

Sometimes, after a system has crossed

a bifurcation point ti, if r is then var-

ied in the reverse direction, the sys-

tem crosses ti without showing a bi-

furcation. Characteristically, there oc-

curs a bifurcation at another point tj that has not been a bifurcation point

on the way there. At that point tj the system returns to the attractor it

was in on the way there, the system is thus bistable in an interval [tj, ti].

Figure 2 also contains an example of such a hysteresis, the system is bistable

in the interval [t1, t4], with a period three attractor for decreasing r and a
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sequence of different attractors (a fixed point, a period eight and a chaotic

or quasi–periodic attractor) for increasing r.

In the present work, bifurcation diagrams will be employed to find and

characterise homeostatic domains in the parameter space given for neural

networks of the type outlined in section 3. The control parameter r varied

will normally be the external input, i.e. the bias term θ1, if direct input is

chosen, or else the external synaptic input o0 (compare section 3.2). Stabil-

ity analysis will ordinarily not exceed an interval [−10, 10], since very high

external inputs are not of interest, homeostatic domains are assumed and

desired to be located at low absolute values of input. The state variables

monitored are the neural outputs σ(ai), the transmitter levels ηi or the re-

ceptor levels ξi. The convergence time at each value r normally is 2000 time

steps, then, 20 successive variable values are plotted.

Another kind of diagram used are

Figure 3: Example of an isoperiodic
plot of a two–neurone network with varied
θ1, θ2, with different isoperiodic domains
(white: stationarity, coloured: periodic os-
cillation, see legend. Black: higher peri-
ods, quasi–periodic oscillation or chaotic
oscillation). The stripes in the bottom left
corner allude to a coexistence of attractors.

isoperiodic plots (see figure 3). Isope-

riodic plots are computed similarly as

bifurcation diagrams, but they have

control parameters rx, ry plotted on

both, the horizontal and on the verti-

cal axis. Convergence is computed at

every point (rx, ry), starting from the

same random initial condition. The

system is iterated for slowly increas-

ing values of ry, while rx is fixed. Then,

ry is reset and the computation is re-

peated for a slightly higher value rx,

etc. The period of the resultant or-

bit is encoded as a colour in lack of a

third dimension. Bifurcation points are then normally located at the bound-

ary line of areas of the same colour. Sets of bifurcation points delimiting a
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domain of qualitatively equal attractors are called bifurcation sets. In isope-

riodic plots, there is no information displayed on distances between fixed

points, and no means to directly display multistability. Stripes, such as in

the bottom left corner of figure 3, indicate coexistence of attractors. In this

thesis, isoperiodic plots will be computed for two neuron networks, with

rx = θ1 and ry = θ2.

Isoperiodic plots in this thesis display stability of the network, not of a

single neuron. If neurons converge to qualitatively different attractors, the

respectively more complex attractor will be depicted. All periodic attractors

of period greater than 9, as well as chaotic or quasi–periodic attractors will

be drawn black, the “ch” (see figure 3) in the legend does not necessarily

mean chaos.

4.2 Dynamical Properties of Hard–Wired Neural Networks

During homeostasis, the networks are stationary, which means they have

stationary synaptic weights. It is probable that in homeostatic domains,

the network dynamics correspond to the dynamics observed for hard–wired

neural networks.

The dynamical properties of small time–discrete neural networks with ad-

ditive neurons, sigmoidal transfer functions and fixed synaptic weights, have

e.g. been investigated by Pasemann. Three of his publications, the papers

“Dynamics of a Single Model Neuron.”[13], “Characterisation of Periodic

Attractors in Neural Ring Networks.”[11] and “Complex Dynamics and the

Structure of Small Neural Networks.”[12] will be briefly summarised insofar

as they are relevant for the present enterprise.

Figure 4 shows the stability domains in the (θi, wii)–space, Pasemann

has discovered for a single self–coupled neuron ni in [13]. Self–coupled au-

tonomous neurons converge to global fixed point attractors for a large part

of the (θi, wii)–space (region I in figure 4). For some θi and an excitatory

weight wii > 4, coexistence of two fixed point attractors is found (region
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II in figure 4). If θi is slowly increased and decreased, hysteresis can be

observed when crossing that domain. For some θi and inhibitory weights

wii < −4, a self–coupled neuron oscillates at period 2 (region III in figure

4).

Attractors in ring networks, i.e. net-

Figure 4: Attractor domains for a sin-
gle self–coupled hard–wired neuron in the
(θi, wii)–space. I: global stability on a
fixed point attractor II: hysteresis of two
fixed point attractors III: a period two–
attractor. (From [13])

works in which neurons are connected

in a one–directional single cycle, have

been investigated in [11]. It was found

out that hard–wired two neuron rings

have parameter domains in which non–

trivial dynamics occur. Two neuron

rings in which either both neurons are

inhibitory or both neurons are exci-

tatory (also called “even” two neuron

rings) have a domain in which a pe-

riod two attractor coexists with two

fixed point attractors, while odd two

neuron rings, i.e. two neuron rings in

which one of the neurons is inhibitory and the other one excitatory, show

global period four oscillation in non–stationary domains. The two neuron

ring set–up will be investigated in this work as well, it will be compared if

the findings agree.

In [12], recurrent networks of two and three neurons have been investi-

gated. For two neurons, Pasemann has analysed the networks with respect

to stability conditions on the determinant D and the trace T of the Jaco-

bian matrix of their neural dynamics. The domain in the (D,T )–space of

a dynamical system in which there are only stable fixed points corresponds

to the triangular region in figure 5. The exact mathematical background

is not subject to the present work. It suffices to know how T and D are

computed in a network of two homeostatic neurons while it is stationary, to
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determine the location of a system in the (D,T )–space. It is presupposed

that c12 = c21 = 1.

T (t) = c11 · ξ1(t) · η1(t) · σ
′(a1(t)) + c22 · ξ2(t) · η2(t) · σ

′(a2(t)) (12)

D(t) = (c11 · c22 − 1) · ξ1(t)·ξ2(t)·η1(t)·η2(t)·σ
′(a1(t))·σ

′(a2(t)) (13)

From these equations, it can already be seen that c11 = c22 = 1 ⇒ D(t) = 0

and c11 = c22 = 0 ⇒ T (t) = 0.

Loss of homeostasis is expected to

Figure 5: Stability domain for a fixed
point (triangular shaped area) in the
(D, T )–space, where D is the determinant,
T the trace of the Jacobian matrix of the
linearised dynamical system. (From [12])

occur in the homeostatic networks upon

leaving the triangular area in the (T,D)–

space. The shaded area is not of spe-

cial interest for this thesis.

It has to be remarked that in spite

of stationarity during homeostasis, net-

works of self–regulating neurons are

still higher dimensional dynamical sys-

tems than their hard–wired pendants.

The findings introduced in this sec-

tion can only be used to generate es-

timates about dynamical phenomena

that are likely to occur. It will be investigated if and how the dynamics of

homeostatic neurons deviates from the dynamics of hard–wired neurons.

4.3 An Analysis of the Learning Equations in Isolation

This section will investigate the equations for ηi and ξi in isolation, to get

an impression about how they take part in the adjustment of a synapse. For

this purpose, the respectively other state variable will be clamped to either

ξi = 1 or ηi = 1. The changes in synaptic weight will be examined and the

effect of the equations in a self–coupled neuron will be discussed.

As derived in section 3.2, there is a scaled sigmoidal dependency between

fixed activation levels a∗

i and corresponding fixed transmitter levels η∗

i . Also,
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ξ~

i depends on the synaptic inputs I
syn
i and the bias term θi. These depen-

dencies are expected to be reflected in the following experiments.

Figure 6 shows the bifurcation di-

Figure 6: Bifurcation diagram for ηi,
with variation of ai, γ = 0.01 and
sign(ηi) = 1

agram of ηi for varying ai. It displays

the dependency of η∗

i on a∗i . The curve

shows a scaled sigmoidal function, as

it was expected from equation (10).

For an inhibitory neuron, the curve

is mirrored about the horizontal at

ηi = 0.

Figure 7 shows the interplay in con-

vergence of transmitter level and ac-

tivation level in a self–coupled neuron

with ξi = 1. Compared to the stan-

dard sigmoidal output (figure 7 (b)), if a neuron is excitatorily self–coupled

(figure 7 (a)), the slope gets steeper, if it is inhibitorily self–coupled (figure

7 (c)), it gets shallower. If the relation γ2

γ1
is chosen differently, the neuron

can enter the hysteresis or oscillatory domain as characterised in [13] and

depicted in figure 4.

The receptor equation is investigated accordingly in isolation, with re-

spect to how it relates to parameter changes. Figure 8 (b) shows the bi-

(a) (b) (c)

Figure 7: Output bifurcation diagrams of ni with ξi = 1 and variation of θi and γ = 0.01.
(a): self–excitation (wii = 1, sign(ηi) = 1), (b): no synapses (sigmoidal output), (c): self–
inhibition (wii = 1, sign(ηi) = −1).
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(a) (b)

Figure 8: Output (a) and receptor (b) bifurcation diagrams of a neuron upon varied
synaptic input I

syn

i . θi = 0.0, β = 0.01

furcation diagram of ξi, as I
syn
i is varied, θi = 0. In figure 8 (a) the corre-

sponding output of the postsynaptic neuron, σ(ai), is plotted. As predicted

by equation (9), the converged ξi is hyperbolically dependent on I
syn
i for

I
syn
i > 0, to the right of the natural limit of homeostasis at I

syn
i = 0, where

ξi has a vertical asymptote. According to equation (9), ξ~

i would have to be

negative for I
syn
i < 0, in order to achieve homeostasis. In this interval, ξi is

stationary at ξ∗i = 0. The output diagram (figure 8 (a)) shows homeostasis

(i.e. stationary output of σ(+a~) = 0.79) for I
syn
i > 0 and resting activa-

tion (σ(ai) = σ(θi) = 0.5) for I
syn
i < 0. These findings confirm the principal

regulatory capacity of the system, realised by the receptor equation (3). In

domains where homeostasis is not possible, a positive ξi would only allow

synaptic inputs to draw activation even further away from a~

i , hence the

stabilisation on ξi = 0.

The explosive growth of receptors, as I
syn
i approaches 0 from the right

reflects the desperate effort to maintain homeostasis upon approaching the

natural limit of the homeostatic interval. From the biological viewpoint, it

is not plausible that the receptor level grows to infinity, in future trials a

saturation level should be implemented (compare section 5.1).

In the present model, obeying Dale’s law (compare section 3.1) has the

side–effect that a neuron can only remain homeostatic if it receives inputs
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(a) (b)

t1

Figure 9: Output bifurcation diagrams for a single neuron with a~

i = +a~, variation
of θi. (a) No synapse, I

syn

i = 4. (b) A self–synapse (cii = 1), ηi = 1, no other synaptic
input.

of a fixed sign, namely sign(a~

i − θi). Neurons that have inhibitory and

excitatory input synapses have to be investigated with special attention,

since the synaptic input can potentially change its sign.

Figure 9 shows the bifurcation diagrams of neural outputs upon variation

of the bias term θi, in a neuron with constant synaptic innervation I
syn
i = 4

(a) and excitatory self–coupling (b), ηi is clamped to +1 in both trials.

In both set–ups, homeostasis could be observed. The homeostatic inter-

vals are limited to the right by the point θi = a~

i ≈ 1.32. For θi > a~

i ,

self–regulation is not possible (compare section 3.1). The receptor level ξi

(not depicted) decreases to 0 and consequently, the output is stationary on

σ(θi). Within the homeostatic intervals, the receptor level ξi grows linearly

as θi decreases, as predicted by equation (9).

If the neuron only receives external input (figure 9 (a)), homeostasis

is achieved practically to infinity for θi < a~

i . In the self–coupled neuron

(figure 9 (b)), homeostasis ceases at θi = t1 and non–trivial dynamics can be

observed. The bifurcation point t1 seems to be identifiable with a bifurcation

point found for hard–wired self–coupled neurons, i.e. it can be located in

the bifurcation set between regions I and II in figure 4. Whereas hard–

wired neurons enter a hysteresis domain of two fixed points crossing that

34



bifurcation set (compare section 4.2), the homeostatic neuron settles in a

chaotic or quasi–periodic attractor. The self–coupled neuron with constant

ηi already has a limited homeostatic domain, as demanded from a homeostat

in section 2.4.

With respect to the two different possibilities of inducing synaptic input

(via input synapses or via variation of the bias term θi), the investigation of

ξi in isolation provides some insights:

The variation I
syn
i can be seen as a special case of variation of o0, in which

there is no other synaptic input. In a single self–coupled neuron, there will

be just one additional internal synapse, whose input will be added to o0. The

findings can hence be expected to be similar to those obtained for variation

of I
syn
i . The low receptor levels for large |Isyn

i | (compare figure 8(b)) allude

that in self–coupled neurons, non–trivial dynamics will not occur in intervals

with large |o0|, since absolute values of synaptic weights |wii| have to be > 4

to cause non–trivial dynamics in hard–wired neurons (compare section 4.2).

On the other hand, the hyperbolic growth of receptors, if I
syn
i approaches the

natural limit of homeostasis at I
syn
i = 0, predicts an interval of non–trivial

dynamics there, since |wii| are assumed to be large in that interval.

When θi is varied, which is exactly the technique applied if input is

induced directly, the adjustment of ξi is linear, as could be seen in the ex-

periments depicted in figure 9, ξi decreases to 0 if it approaches the natural

limit of homeostasis, it grows far from that point. Thus, non–trivial dynam-

ics are predicted to occur far from that limit, because synaptic strengths are

expected to be larger there.

4.4 A Single Self–Coupled Neuron

The foremost purpose in the investigation of a single self–coupled neuron

is to give evidence that the introduced neuron model actually defines a

homeostat as defined in section 2.4, i.e. it is anticipated to find parameter

settings for which there is an interval of Iext in which the desired state x~ is a
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fixed point attractor of the self–coupled neuron. Further, it is expected that

non–trivial attractors delimit the homeostatic interval, in the domains in the

(wii, θi)–space that were characterised for hard–wired self–coupled neurons

(compare section 4.2). Section 4.4.1 will investigate the single self–coupled

neuron upon variation of synaptic input, while section 4.4.2 will discuss the

set–up in which θi is varied.

4.4.1 External Input as Synaptic Input

In the following experiments, the

t1 t2

(a)

t1 t2 t3

(b)

Figure 10: Output bifurcation diagrams
for self–coupled neurons with a~

i = +a~,
θi = 0, β = γ = 0.01. Variation of o0. (a)
excitatory (sign(ηi) = 1), (b) inhibitory
(sign(ηi) = −1)

control parameter varied will be the

postsynaptic output o0 of a group of

k input neurons (see section 3.2), pro-

jecting onto ni, the self–coupled neu-

ron under investigation.

Figure 10 shows two typical patterns

of output diagrams for an excitatory

(a) and an inhibitory (b) self–coupled

neuron. As predicted in the last sec-

tion, the findings obtained are similar

to those found for variation of I
syn
i in

a neuron with cii = 0. Still, non–

trivial dynamics occur in the vicinity

of the natural limit of homeostasis at

I
syn
i = o0 + η~

i · σ(a~

i ) = 0, as an-

ticipated. The homeostatic interval

is delimited to one side by the natu-

ral limit of homeostasis at I
syn
i = 0

(o0 = t2 in the excitatory neuron (a), o0 = t1 in the inhibitory neuron (b)).

The other limit point (t1 in (a) and t3 in (b)) of the non–trivial interval

seems to correspond to a point in one of the bifurcation sets found for
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hard–wired neurons (compare section 4.2, figure 4), if the contribution of

the external synaptic input to neural potential is considered, i.e. if θi in the

diagram is substituted for θ′i = θi+ξ~

i ·o0. The length of the interval o0 with

non–trivial dynamics depends on the difference (a~

i − θi). This is because

this difference linearly influences w~

ii (compare equation (11)), and has a

strong impact on θ′i, the two variables that have to exceed certain values to

enter the domain of non–trivial oscillation characterised in figure 4.

The non–trivial interval is enclosed by two intervals of stationary acti-

vation. In agreement with the findings on neurons with cii = 0 in section

4.3, activation is homeostatic to the side of that dynamically non–trivial

interval, where sign(a~

i − θi) = sign(ηi) and stationary on a∗

i = θi = 0 to

the other side. Non–trivial dynamics in inhibitory neurons generally involve

period two oscillation, while excitatory neurons tend to exhibit hystereses,

which agrees with the finding on hard–wired neurons introduced in section

4.2, but higher order, quasi–periodic or chaotic oscillation occurs as well

(e.g. in figure 10 (b), interval [t2, t3]).

Thus, as predicted, if the control parameter varied is o0, non–trivial dy-

namics only occur close to the natural limit of the homeostatic interval,

where I
syn
i switches sign in a self–coupled neuron. The homeostatic interval

is practically not delimited to the other side.

4.4.2 External Input Directly Added to Activation

If the input varied is directly induced into the self–coupled neuron (i.e. vari-

ation of θi), the neuron generally shows a homeostatic interval enclosed by

a dynamically non–trivial interval and another interval in which the output

is stationary on σ(θi), as it was already observed in a self–coupled neuron

with ηi = 1 (compare figure 9, (b)).

Figure 11 shows the output (a), receptor (b) and transmitter (c) bifur-

cation diagrams of an inhibitory neuron with a~

i = −a~. In the output

diagram (a), there is a homeostatic interval [a~

i , t1] in which the output is
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t1

(a)

t1

(b)

t1

(c)

Figure 11: Output, receptor and transmitter bifurcation diagrams for an inhibitory
(sign(ηi) = −1) self–coupled neuron. Variation of θi. a~

i = −a~, β = 0.1, γ = 0.1

maintained on σ(a~

i ). The receptor diagram (b) shows that in this interval,

ξ~

i grows proportional to θi, as expected from equation (9). For θi < a~

i

(i.e. beyond the natural limit of homeostasis), the output stabilises on σ(θi),

since receptors remain stable at ξ∗i = 0. For θi > t1, the neuron oscillates

at period two. The bifurcation point t1 can apparantly be identified with

a point at the border of region I and region III in figure 4. Also, the os-

cillation at period two corresponds to the findings obtained for hard–wired

neurons. The transmitter equation displays the dependency of η∗

i on a∗i

expressed in equation (10).

Analogous attractor patterns (see figure 12) could be observed for set–

ups with a~

i = +a~ ((b) and (c)) and excitatory neurons ((a) and (b)).

The bifurcation points t1 apparantly can always be identified with points on

t1

(a)

t1

(b)

t1 t2

(c)

Figure 12: Output bifurcation diagrams for single self–coupled neurons. Variation of θi.
(a): sign(ηi) = 1, a~

i = −a~, β = 0.1, γ = 0.01. (b): sign(ηi) = 1, a~

i = +a~, β = 0.01,
γ = 0.5. (c): sign(ηi) = −1, a~

i = +a~, β = 0.1, γ = 0.1.
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one of the borderlines between region I and region II or III respectively

in figure 4. The homeostatic interval is delimited to the other side by the

natural limit point θi = a~

i (compare equation (9)).

In general, the learning parame-

t1 t2

(a)

t1 t2

(b)

Figure 13: Output and receptor dia-
grams of an excitatory (sign(ηi) = 1) self–
coupled neuron with a~

i = +a~, β = 0.4,
γ = 0.01. Variation of θi. The quasi–
periodic or chaotic attractor changes qual-
ity at t1 because ξi is forcibly maintained
positive

ters β, γ can be changed in a broad

range without substantially changing

the qualitative behaviour of the sys-

tem. Only for big β, an unfavourable

phenomenon occurs: Some quasi–pe-

riodic or chaotic attractors exceed the

artificial threshold ξ1 = 0, if β is not

sufficiently small (see figure 13). As

already mentioned, a discussion of how

to fix the drawback that ξi can drop

below 0 according to equation (3) in

future models will be performed in

section 5.1. The dynamics in these

cases develop in an odd way. It is

hard to say what “big β” are, it seems

that for very long intervals, this odd

behaviour occurs for all β. The bigger

β is chosen, the shorter gets the inter-

val of “non–odd–but–non–trivial” dy-

namics (interval [t1, t2] in figure 13).

Cases in which such artefacts occur were excluded from analysis, since they

do not display “natural” dynamics, as described by the state equations.

The presented findings showed that a neuron that receives external inputs

as variation of the bias term θi define a robust homeostat, with a homeostatic

interval that is little influenced by slight parameter changes. Also, within the

homeostatic interval, receptors do not grow without bounds, but linearly to
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the environmental changes. Although in the variant where input is induced

via synapses, homeostasis was also achieved, the practically infinite length

of the homeostasic interval is not desirable. As described in section 2.4, the

conditions under which a homeostat can regulate ought to be limited.

The next section will investigate how the homeostatic neurons behave if

they are coupled. There will be no further analysis of neurons with exter-

nal input induced via synapses. The explosive growth upon approaching

I
syn
i = 0 and the unlimited capacity to regulate inputs made that variant

less interesting for dynamical analysis. An investigation of the interaction of

these two variants of inducing inputs would be interesting, but would exceed

the scope of this thesis.

4.5 A Network of Two Homeostatic Neurons

When coupling two neurons n1 and n2, a six–dimensional dynamical system

< a1, a2, ξ1, ξ2, η1, η2 > yields. The networks investigated here will always

be mutually coupled, i.e. they will have c12 = c21 = 1, but the recurrent

connections will be varied, i.e. c11, c22 ε {0, 1}. The networks are assumed

to have an identical homeostatic activation level a~

1 = a~

2 . β and γ will also

be fixed within a network.

It is hoped to find parameter domains in which the whole network achieves

homeostasis. First, in section 4.5.1 the case of two neuron networks where

both of the neurons are excitatory or inhibitory will be discussed. Section

4.5.2 investigates the set–up in which an excitatory neuron is coupled to an

inhibitory neuron.

4.5.1 A Network of Two Neurons of Equal Sign

In two neuron networks with sign(η1) = sign(η2), the synaptic input (Isyn
i )

has a fixed sign in n1 and n2, which makes analysis more relaxed, because

synaptic inputs will never cross I
syn
i = 0. Probably, they will not even get

close to that point. I
syn
i ≈ 0 has turned out to be a critical value in section

40



4.3, because the homeostatic receptor levels ξ~

i explode if they approach the

natural limit of homeostasis at I
syn
i = 0.

A “smooth” loss of regulatory capacity is expected to occur if θi enters

domains where sign(Isyn
i ) = −sign(a~

i −θi), i.e. domains where ξ~

i had to be

negative in order to promote homeostasis. As already seen, neurons tend to

maintain ξi = 0 in these intervals. The respectively other neuron nj, which

will, in these cases, receive a synaptic input of η∗

i (θi) ·σ(θi), where η∗i (θi) can

be computed with equation (10), is expected to behave accordingly (compare

sections 4.3 and 4.4).

The natural loss of regulatory capacity occurs if θi > a~

i in an excitatory

network and if θi < a~

i in an inhibitory network (compare section 3.1 and

equation (9)). Thus, if the (θ1, θ2)–space is divided with axes θ1 = a~

1 and

θ2 = a~

2 , four quadrants will be obtained: one in which both neurons are

expected to have ξ∗i = 0, two in which either one of the neurons is expected

to have ξ∗i = 0 and one in which both neurons are in a domain in which

they can regulate in principle. This quadrant is expected to be governed by

interactive dynamics and is hence most interesting.

As an advance, there will be no exceptions to that expectation. Neu-

rons will never show any behaviour other than stationarity on a∗

i = θi in

domains in which they cannot regulate, because sign(I syn
i )=−sign(a~

i − θi)

(compare equation (9)). Hence, there is no homeostatic stability found in

quadrants other than the quadrant labelled “interesting” above. This reg-

ularity accounts for both, two neuron ring networks and networks in which

self–coupling is involved. Therefore, findings will only be explained with

respect to the “relevant” quadrant, in which homeostasis of the network is

possible. Expectations about homeostatic intervals in that quadrant can be

derived from the findings on hard–wired neurons presented in section 4.2.

First, the case of an even ring of two neurons, i.e. a network in which

the two neurons are mutually coupled (c12 = c21 = 1), but not self–coupled

(c11 = c22 = 0) will be treated. Figure 14 shows the isoperiodic plot of an
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inhibitory two neuron ring with a~

1,2 = −a~, with reference axes painted at

θ1 = a~

1 and θ2 = a~

2 .

Homeostasis of the whole network

Figure 14: Isoperiodic plot of an in-
hibitory (sign(η1,2) = −1) two ring (c11 =
c22 = 0) network. Variation of θ1 (hor-
izontal) and θ2 (vertical). a~

1,2 = −a~,
β = γ = 0.01.

is achieved in the white area in this

relevant quadrant (top right) in figure

14. This homeostatic area is delim-

ited by a hyperbolically shaped region

of non–trivial dynamics, i.e. higher

period, quasi–periodic or chaotic os-

cillation. The blue stripes allude co-

existence of a period two orbit. Hard–

wired even two neuron rings have no

non–trivial dynamics other than pe-

riod two–oscillation, the self–regula-

ting neuron model disagrees with its

hard–wired counterpart in this concern. But it agrees with respect to the

bifurcation set: The borderline of the dynamically non–trivial domain can

apparently be described by means of the trace T and the determinant D of

the Jacobian matrix of the linearised network, just as in hard–wired networks

(compare section 4.2): In an even ring network, the trace T = 0 (according to

equation (12)) and the determinant D = −ξ1 ·ξ2 ·η1 ·η2 ·σ
′(a1(t))σ

′(a2(t)) < 0

(according to equation (13)). Therefore, stability is expected to cease at D <

−1 (compare figure 5). During homeostasis, this condition solely depends

on the inputs θ1 and θ2, since synaptic inputs are fixed as I
syn
i = η~ ·σ(a~

1,2)

for both n1 and n2, because of the stationarity on equal fixed points. From

equations (9) and (13) and the dependency σ′(x)
σ(x) = σ(−x), the determinant

of a two neuron ring can be derived as

D~ = −(a~

1,2 − θ1)(a
~

1,2 − θ2) · σ(−a~

1,2)
2 (14)

where σ(−a~)2 = 0.0441 and σ(+a~)2 = 0.6241. The form of D~ explains

the hyperbolic shape of the curve. It also predicts the confirmed observation
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(a) (b)

Figure 15: Isoperiodic plots for excitatory (sign(η1,2) = 1) two neuron ring (c11 = c22 =
0) networks. Variation of θ1 (horizontal) and θ2 (vertical). β = γ = 0.01. (a): a~

1,2 = −a~.

(b): a~

1,2 = +a~.

that for a~

1,2 = +a~, the homeostatic intervals are respectively much longer.

Figure 15 shows the isoperiodic plots of excitatory two neuron rings with

a~

1,2 = −a~ (a) and a~

1,2 = +a~ (b). For excitatory neurons, the relevant

quadrant is located bottom left accordingly. If a~

1,2 = −a~, the bifurcation

set can only partially be described by means of the conditions for stationarity

in the (D,T )–space. The boundary curve follows in parts the hyperbola

derived from this condition, but it has a “lump” (compare figure 15 (a))

that makes the homeostatic domain smaller than predicted.

If a~

1,2 = +a~, there is again coexistence (indicated by the stripes) of a

period two and a quasi–periodic or chaotic attractor. The corresponding bi-

furcation diagrams mostly showed hystereses of a period two attractor and a

sequence of attractors (homeostatic stationarity followed by a quasi–periodic

or chaotic attractor). Bifurcations delimiting the homeostatic domain oc-

curred with D~ > −1 for variation of θ1 in both directions. Stationarity

in excitatory two neuron rings was hence lost earlier than expected from

the condition of stationarity in the (D,T )–space for hard–wired neurons.

The quasi–periodic or chaotic oscillation of the networks is another such

disagreement.

Figure 16 displays the isoperiodic plots of an inhibitory network, in which
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one of the neurons is self–coupled, i.e. c11 = 1. Again, homeostasis is

achieved in the white area in the relevant quadrant (top right).

The conditions for non–trivial dy-

Figure 16: Isoperiodic plot of an in-
hibitory (sign(η1,2) = −1) two neuron net-
work with c11 = 1, c22 = 0. Variation of θ1

(horizontal) and θ2 (vertical). a~

1,2 = −a~,
β = γ = 0.01.

namics in this set–up get a bit more

complicated, since for a network with

one self–coupling, neither the trace

T = 0 nor the determinant D = 0

(compare equations (12) and (13)).

Neural outputs are fixed during home-

ostasis and a~

1 = a~

2 , therefore the

synaptic input to n1 during homeosta-

sis is given by I
syn
1 = 2 · η~ · σ(a~

1,2),

while the input to n2 yields I
syn
2 =

η~ ·σ(a~

1,2). From equations (12), (13)

and (9) and the fact that σ′(x)
σ(x) = σ(−x),

the trace T and the determinant D of such a network during homeostasis

can then be derived as

T~ =
1

2
(a~

1,2 − θ1) · σ(−a~

1,2) (15)

D~ = −
1

2
(a~

1,2 − θ1) · (a
~

1,2 − θ2) · σ(−a~

1,2)
2 (16)

The conditions for non–trivial dynamics are T + D = −1 for inhibitory

neurons and T−D = 1 for excitatory neurons (compare section 4.2, figure 5).

Hence, an overall condition to be met would be |T |−D = 1. The bifurcation

set in the relevant quadrant for the inhibitory network can apparently be

described by means of this condition, bifurcation to period two oscillation

occurs. In an excitatory two neuron network with a single self–coupling,

stationarity again was lost earlier than expected.

In an inhibitory network with full connectivity (i.e. cij = 1 ∀i, jε{1, 2}),

the dynamics in the interesting quadrant are bounded by a bifurcation set

that yields a straight line in the (θ1, θ2)–space (compare figure 17), which is
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due to the fact that D = 0 (compare section 4.2). Hence, the condition for

leaving the stationary area depicted in figure 5 solely depend on the trace

T . In a two neuron network with sign(η1) = sign(η2) and full connectivity,

the synaptic input is equal for both neurons upon homeostasis, it yields

I
syn
1,2 = 2 · η~ · σ(a~

1,2). The trace T is given by

T~ = (a~

1,2 −
θ1

2
−

θ2

2
) · σ(−a~

1,2) (17)

Non–trivial dynamics can be expected if |T | > 1. Again, in the inhibitory

network, this condition appears to be met, while in corresponding excitatory

networks, it is not, oscillation starts earlier. Investigation of the hysteresis

effect, which could again be observed in bifurcation diagrams of the excita-

tory network, showed that the later bifurcation point was located where it

was expected from the condition.

A special remark on excitatory net-

Figure 17: Isoperiodic plot of an in-
hibitory (sign(η1,2) = −1) two neuron net-
work with c11 = c22 = 1. Variation of θ1

(horizontal) and θ2 (vertical). a~

1,2 = +a~,
β = γ = 0.01.

works has to be made. These net-

works oftentimes have quasi–periodic

or chaotic attractors that exceed the

threshold at ξi = 0, even for very

small β, e.g. β = 0.01. This draw-

back further reinforces the aim to mod-

ify the receptor equation in future tri-

als (see section 5.1).

The investigation of networks with

sign(η1) = sign(η2) in general agrees

with the findings on single neurons

(section 4.4) and complies roughly with the findings on networks with fixed

synaptic weights (section 4.2). Taking the fixed points as reference axes in

the (θ1, θ2)–space, there is just one area in which homeostasis of a two neu-

ron network can be achieved and actually is achieved within a finite domain

of parameter settings.
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4.5.2 A Network of an Excitatory and an Inhibitory Neuron

Networks with neurons of different sign(ηi) are expected to behave more

“awkward” than those in which both of the neurons produce output of the

same sign. If there are neurons with cii = 1 in such a network, homeostasis

is in principle impossible in the strict set–up underlying the present experi-

ments, which will be discussed below. The section will begin with the easy

case, i.e. with the odd two neuron ring network.

Figure 18 shows the isoperiodic plot

Figure 18: Isoperiodic plot of a two neu-
ron ring (c11 = c22 = 0) network with
sign(η1) = 1 and sign(η2) = −1. Vari-
ation of θ1 (horizontal) and θ2 (vertical).
a~

1,2 = −a~, β = γ = 0.01.

of an odd two neuron ring. In this

case, I
syn
i has fixed (though different)

signs in both n1 and n2 as before,

since each neuron receives synaptic

input from a single synapse. Home-

ostasis is achieved in the white area in

the relevant quadrant (bottom right).

Since in ring networks, T ~ = 0 (com-

pare equation (12)), the conditions for

non–stationarity of dynamics depend

on D~ solely, which can be computed

with equation (14) that gives the gen-

eral determinant for ring networks. It is expected that stationarity is lost at

D~ = 1, and actually, stationarity appears to be lost exactly when meeting

that condition.

On the first glance, the black rim of the period four attractor looks as if

it was composed of long transients that would settle upon further iteration

of the system. Graphical analysis of the bifurcation diagram (see figure 19

(a)) could not resolve this question. Examination of how an exemplary orbit

(see figure 19, (b)) evolves, suggests that the system actually has a chaotic

attractor there. The orbit remains close to periodic orbits, but it is always

repelled after a certain time span, because the respective periodic orbits are

46



(a)

t1 t2

(b)

Figure 19: Chaotic attractor of a ring (c11 = c22 = 0) network with sign(η1) = 1 and
sign(η2) = −1. a~

1,2 = −a~, γ = β = 0.01, θ2 = −3 (a) Bifurcation diagram of σ(a1).
Variation of θ1 (b) A corresponding orbit in the (σ(a1), σ(a2))–space (plot started after
5000 convergence iterations), with θ1 = −0.3

not stable. Such behaviour is typical for chaotic orbits. The period four

oscillation that follows the chaotic attractor is again an agreement with the

findings on hard–wired two neuron rings.

More complicated get things if self–couplings are added to a network

with an inhibitory and an excitatory neuron. Taking into account the fixed

absolute value of η~

i and the fixed output rate during homeostasis, it be-

comes obvious that homeostasis in a two neuron network is in principle

impossible, if sign(η1) = −sign(η2) and one of the neurons is self–coupled:

The synaptic input in a self–coupled neuron during homeostasis would yield

I
syn
i = (−|η~

i | + |η~

i |) · σ(a~

1,2) (remember: a~

1 = a~

2 ), which corresponds to

I
syn
i = 0. Without synaptic input, there is no regulation possible. Further-

more, since both neurons aim at maintaining homeostasis it can be antic-

ipated that inputs to the self–coupled neuron(s) will be close to I
syn
i = 0.

Therefore, dynamics cannot be predicted to develop in a controlled way,

because receptors explode to one side of that point and drop to ξi = 0 on

the other side (compare section 4.3).

Figure 20 shows two isoperiodic plots for the respective cases ((a): n1 is

self–coupled, (b): both neurons are self–coupled). The white areas depict

domains in which one or both of the neurons have ξ∗i = 0. It has to be added
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(a) (b)

Figure 20: Isoperiodic plots for a two neuron network with sign(η1) = 1 and sign(η2) =
−1. Variation of θ1 (horizontal) and θ2 (vertical). β = γ = 0.01. (a): a~

1,2 = −a~, c11 = 0,

c22 = 1 (b): a~

1,2 = +a~, c11 = c22 = 1

that for some conditions, the neurons operate at an average activation level

close to a~

i , but ever in a non–stationary fashion.

But before judging these finding, it should be considered that homeosta-

sis could again be achieved in a three neuron network with one inhibitory

and two excitatory neurons, which is a network containing neurons with

different sign(ηi) as well. Also, if a~

1 = −a~

2 homeostasis could be achieved

for some parameter settings in a two neuron network with different sign(ηi)

and self–couplings, independent of which of the neurons takes which of the

fixed points. Finally, if a self–coupled neuron receives a small extra synaptic

input, the network could stabilise on the desired state x~ for some param-

eter settings, without explosion of ξi. It would be interesting to further

investigate these cases, but there will be no such analysis performed here,

since this would exceed the scope of the work.

4.6 Summary of the Results

The analysis lead to some important generalisations and characterisations

about how and to what extend the investigated neuron model is homeostatic.

In the investigation of the single neuron, it could be shown that the aim

to settle in a stationary state x~

i , in which activation maintains stable at a

48



target level a~

i , could be achieved for a reasonable domain in the parameter

space.

Also, in two neuron ring–networks, the homeostatic capacity of the single

neurons was preserved, a homeostatic domain could be detected and char-

acterised. In two neuron networks, where at least one of the neurons was

coupled to itself, homeostasis could only be achieved if sign(η1) = sign(η2).

Concerning the limits of homeostatic domains, the networks were ob-

served to roughly comply with the stationarity criteria that account for

hard–wired neural networks. The homeostatic domains lie within the fixed

point domain in the (D,T )–space of the Jacobian matrix of the linearisation

of the system, depicted in figure 5. The homeostatic domains could be ap-

proximately characterised with respect to the system parameters θi and a~

i .

For different structural settings, different conditions for stationarity could

be derived, which are reflected in the different shape of homeostatic domains

as they are displayed in the isoperiodic plots in the (θ1, θ2)–space.

Changes in the learning parameters β and γ were generally not relevant

for the qualitative outcome, if not chosen extremely high or low. In exci-

tatory networks, loss of homeostasis frequently resulted in settlement in a

quasi–periodic or chaotic attractor that would have dropped below ξi = 0,

if not impeded. In these cases β had to be chosen sensitively and possibly

very small.

Inhibitory networks followed the expectations derived from findings on

hard–wired neural networks closely. Bifurcations seemingly occurred at the

exact limits predicted. They oscillated at period two, if there was self–

coupling in the network. Excitatory networks dominantly exhibited chaotic

or quasi–periodic oscillation and generally left the homeostatic interval ear-

lier as expected from the computed conditions for stationarity. Frequently,

hysteresis of the homeostatic fixed point attractor and a non–trivial attrac-

tor could be observed in excitatory networks.

Odd ring networks complied the conditions for stationarity computed
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and oscillated at period 4, in agreement with their hard–wired pendants.

Still, the transition from stationarity to periodic oscillation involved a small

chaotic domain.

In two neuron networks with sign(η1) = −sign(η2) and self–coupling,

homeostasis could not be achieved. This incapacity is due to the fact that

equal target activation levels of the two neurons imply an equal magnitude

of inhibitory and excitatory outputs during homeostasis that cancel out

each other in neurons that are innervated by both, the other neuron and

themselves. Asymptotic behaviour of such networks was diverse. If the

strict experimental restrictions are softened, (e.g. by allowance of more

neurons, external synaptic stimulation or different target activation levels),

even in such networks, homeostasis is possible.

The investigation of single neuron networks included a juxtaposition of

synaptic and direct induction of external input. The receptor levels ξi that

realise homeostatic adaptation were observed to grow linearly with θi and

hyperbolically with o0. This observation lead to a neglection of the latter

variant in the investigation of two neuron networks, because the hyperbolic

dependency lead to an explosion of receptor levels.
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5 Conclusion

This section is dedicated to the evaluation of the findings presented in the

previous section, with respect to how they could form a baseplate, on which

to build up a theory of learning. Section 5.1 is devoted to a discussion

of how and why the proposed neuron model came short and how it could

be extended and improved. What the findings obtained in the dynamical

analysis add up to in the context of the adopted approach to learning (see

section 2.3), will be discussed in section 5.2.

5.1 Discussion of the Theoretical Model

The dynamical analysis of the homeostatic neuron model lead to a variety

of ideas and insights about its qualities, its drawbacks and about possible

extensions. In general, it could be shown that the defined dynamical system

achieves homeostasis under diverse conditions. Still, some shortcomings

were encountered during the investigation, some of them more drastic than

others. Critical issues to pay attention to in future experiments can be

educed from these experiences. Some of the most important points and

possible extensions of the proposed model will be discussed in this section.

Perhaps the most severe drawback of the dynamical system proposed is

the fact that the receptor level in some situations would drop below ξi = 0,

if it was not forcibly detained. Having detected this phenomenon in the

investigation of a single neuron, it was first not considered relevant, which

turned out to be a mistake later, in the analysis of networks of excitatory

neurons. A simple manoeuvre to fix this shortcoming is to use the difference

in the output rates (σ(a~

i )− σ(ai(t))) instead of the difference in activation

levels (a~

i −ai(t)). With this move, the maximal negative change of receptor

levels would be ∆ξi(t) = β · ξi(t) · (σ(a~

i ) − 1), which is smaller than ξi(t),

if β < 1.

Another weak point is the possibly unbounded growth of ξi, which became

evident if the neural inputs were very close to I
syn
i = 0. Bounding of the
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receptor level could e.g. be performed by using the sigmoidal (or multiples

m) of the receptor level in the computation of synaptic weight, i.e. wij(t) =

ηj · m · σ(ξi). Implementing a saturation level for the receptor equation is

a sensitive issue, because η~

i is already fixed, depending on a~

i (compare

equation (10)). If ξ~

i had a fixed limit, too, the absolute values of synaptic

strengths during homeostasis would be strictly bounded. Such bounds would

principally cut off large parts of the parameter space.

The potential unboundedness of the transmitter level ηi did not cause

any problems, the estimate that converged transmitter levels would rarely

leave the interval given by equation (10) was right.

Another unfavourable effect, which was rather a shortcoming of the net-

work model than of the neuron model, is that odd rings with recurrent

connections do not achieve to regulate at all. The prospects on how slight

changes in the set–up (more neurons, different fixed points, low external

synaptic inputs), make incapacity to regulate disappear, allude that this

shortcoming can be attributed to the laboratory conditions, in which the

model was tested. Still, it cannot be assumed that situations in which there

is a synaptic input of I
syn
i ≈ 0 do not occur if a neuron receives excitatory

and inhibitory inputs, and the consequent explosion of receptor levels is, as

already mentioned, a severe drawback.

Some general considerations concern the principal idea to employ a fixed

receptor potential for all incoming synapses of a neuron. Individual learning

of receptor levels at each synapse is unfavourable, because computational

complexity of the anyway complex network model would explode. Since

neurons achieve to regulate in large parameter domains, it does on the first

glance not even appear necessary. But analysis in this work was restricted to

neurons that receive either excitatory or inhibitory input, apart from the set–

up in which an a network contained reflexive couplings and had sign(η1) =

−sign(η2), which turned out to be problematic. Although the prospect on

achievement of homeostasis in a three neuron network with different sign(ηi)
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anticipates that competitive inputs do not generally impede homeostasis, it

could be thought of implementing a compromise, inspired by observations

of biological brains. There are two principal chemical neurotransmitters

employed in synaptic signal transduction, which are glutamate in excitatory

and GABA in inhibitory synapses. These transmitters bind to different

types of receptors (glutamate receptors and GABA receptors respectively)

(compare [8], chapter 12, pp. 207-228, on Synaptic Integration)5. Hence,

the obvious proceeding would be to determine the change in receptor density

of GABA-ergic and glutminergic receptors independently. Such a model

promises relief for several of the encountered problems: Changes in sign

of the overall input would not lead to explosion of receptor levels anymore.

Also, the observed phenomenon that inputs cancel each other in an networks

with different sign(ηi) would no more be a matter.

It remains questionable, whether such a network would be too powerful,

because neurons that receive inputs of both types would not have domains

in which regulation is in principle impossible anymore. It can be anticipated

that in such a set–up, one of the receptor levels would always be at ξi = 0, the

neuron would pick only the input of the desired type to enter the cell. Still,

neurons could exhibit non–trivial dynamics, probably, if the stationarity

constraints outlined in this thesis are violated. Such neurons would at least

not be universally homeostatic.

Another consideration refers back to section 2.4, in which homeostasis

was discussed: It is assumed that the activation level not as such as an es-

sential variable, i.e. loss of homeostasis does not imply cell death. This is a

reasonable decision insofar as if a network only operated homeostatically, it

would output at a fixed rate, which would not allow variation of behaviour

(compare section 5.2). But still, it could be thought about defining circum-

stances that are considered as mortal, i.e. if a neuron enters them, it is

5This scenario is, of course, just the prototypical one: there are more neurotransmitters,

even some that can bind to different kinds of receptors, etc., but, as mentioned before,

the network model is a strong idealisation.
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excluded from network computation.

In spite of the mentioned problems and restrictions, the neuron model

met well with the requirements specified for a homeostatic neuron. For

a contiguous domain within the parameter space, robust maintenance of

homeostasis could be observed. Even if the proposed changes would be

realised, it can be assumed that the principle findings would be preserved,

i.e. the analysed criteria for homeostasis would probably still account, if

the changes are respected in the computation. The concrete homeostatic

domains would, of course, be modified.

A last theoretical remark has to be made with respect to the variants of

synaptic or direct inputs. This difference as such is only a computational

one, how it is interpreted is up to the reader. In the input synapse case,

interpretation is straight forward, but direct modification of the activation

level could be imagined in different ways. The association alluded by the

term “direct input“ is probably an electrode applied to the cell body. But

other possible interpretations are e.g. innervation by synapses that carry

a neurotransmitter which binds to receptors of a fixed density, or direct

stimulation of specific sensory neurons.

5.2 Prospect: Situated Homeostatic Neural Networks

The proposed model — or a corresponding improved model of homeostatic

adaptation in neurons — is meant to realise adaptivity in situated agents.

Thus, we will flip the coin and have a short prospect on how the findings

obtained could relate to behavioural issues, if a network of homeostatic

neurons is integrated in a sensorimotor loop.

The first question to address is how such an integration would look like.

As it is common for neural network applications, sensory and effectory sub–

systems would have to be specified, i.e. it had to be determined, how the

system affects and is affected by the environment. It is hoped that in a clever

structural set–up, the implemented desire of the neurons to be homeostatic
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would lead to an adaptive behaviour. Further, it is hoped that evolutionary

algorithms (compare section 2.3) would be able to generate such a clever

set–up. The long term vision of how adaptive agents are developed is evo-

lution of network structures (number, connectivity and parametrisation of

neurons), in which synaptic strengths are learned by means of homeostatic

self–regulation.

In principle, it has to be considered thoroughly how this is imagined to

work: If neurons were universally able to maintain homeostasis, they would

always output at a fixed rate, independent of the input. Thus, there has to

be the possibility to distort homeostasis, in order to yield alteration of the

system’s behaviour. The proposed model leaves space for such distortion in

at least three different ways:

1. Since loss of homeostatic activation is not considered to be mortal, neu-

rons could be stimulated in a way that directs them in non–homeostatic

domains, to achieve an alteration of their behaviour.

2. The assumption that the environment changes on a much slower time

scale cannot be expected to hold true in general. Neural dynamics in

a driven system would probably be transient dynamics.

3. A mechanism that modifies the target activation levels could be estab-

lished.

Näıvely imagined, all three possibilities could lead to adaptive behaviour.

Concerning point 1., the fact that non–trivial dynamics occurs in biological

brains alludes that not only stationary dynamics can play a functional role

in the determination of behaviour. Periodic or chaotic oscillation of neurons

might be desirable in some situations.

With respect to point 2., the näıve vision is that hostile environmental

factors move the activation level in a neuron such that behaviour is altered

before homeostasis can be re–achieved. Still, long term changes, such as slow

changes in illumination, due to wheather or daytime, could be adapted to
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homeostatically. Situated homeostatic networks are not desired to actually

achieve homeostasis in all possible situations, fast processes are expected to

move the activation level. But the homeostatic mechanism is supposed to

maintain the activation value close to the target activation, on the long run.

A mechanism to reset target activation levels, as described in point 3.,

could be implemented as hormonal control, following own dynamics: a

switch between the two different fixed points could e.g. be interpreted as

wake and sleep mode that are alternated in a situated agent.

For the first two options, it would be important to choose parameters

such that homeostasis is not too robust, i.e. to impede that homeostatic

domains are very large, or to locate the neuron close to a bifurcation set at

rest.

There are many more models imaginable, e.g. mixing homeostatic and

non–homeostatic neurons, but the evidence on homeostatic regulation in

biological neurons leaves space for the hope that such complication of the

model is not necessary. There are difficulties connected with the neuron

model, because it is strictly constrained with respect to the domains, the

synaptic weight matrix can enter: Dale’s rule already imposes some con-

traints, the interdependencies of synaptic weiths due to fixed receptor and

transmitter levels within a single neuron restrict possible synaptic weight

matrices even more. It remains to be investigated, how networks of homeo-

static neurons perform in driven agents. It is hard to predict the dynamic

behaviour in driven networks that will probably be much larger than the in-

vestigated ones and in which external and net–internal inputs will interact

and change in a much less controlled way.

But still, with homeostasis, there is a mechanism found that adapts

synapses locally, according to a principle that do not rely on any presupposi-

tion about external factors. The homeostatic neuron has proven to stabilise

and maintain neural dynamics in a fixed point attractor, robustly and in

a large part of the parameter domain. Nevertheless it allows versatile dy-
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namics within the network, including oscillation and hystereses, that could

be employed to cause sequences of output signals or context sensitivity of

behaviour. The different attractors have limited and defined domains within

the parameter space. These properties define a rich tool kit on which an

evolutionary algorithms could draw. I personally would be really surprised

if homeostatic networks models — even in this preliminary form — could

not be set–up with the help of artificial evolution to fulfil simple tasks.
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Überlegungen zu einer Neurodynamik Modularer Kognitiver Sys-

teme.” Retrieved from:

http://www.ais.fraunhofer.de/INDY/fpas/publications/Suhrkamp.pdf,

13.12.2003. Originally published in: In G. Rusch, S. J. Schmidt and

O. Breidbach (eds.): “Interne Repräsentation - Neue Konzepte der
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