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Abstract. We introduce a series of evolutionary robotics simulations that address
the behaviour of individuals in socially contingent interactions. The models are
based on a recent study by Auvray, Lenay and Stewart (2006) on tactile percep-
tual crossing in a minimal virtual environment. In accordance, both the empirical
experiments and our simulations point out the essential character of global embod-
ied interaction dynamics for the sensitivity to contingency to arise. Rather than
being individually perceived by any of the interactors, sensitivity to contingency
arises from processes of circular causality that characterise the collective dynamics.
Such global dynamical aspects are frequently neglected when studying social cog-
nition. Furthermore, our synthetic studies point out interesting aspects of the task
that are not immediately obvious in the empirical data. They, in addition, gener-
ate new hypotheses for further experiments. We conclude by promoting a minimal
but tractable, dynamic and embodied account to social interaction, combining syn-
thetic and empirical findings as well as concrete predictions regarding sensorimotor
strategies, the role of time-delays and robustness to perturbations in interactive
dynamics.
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1. Introduction

In recent years, a dynamical systems turn has become increasingly popular in psy-
chology and cognitive science (Beer, 2000; Port & van Gelder, 1995; Thelen &
Smith, 1996). Some dynamical systems approaches attempt to capture observed
psychological phenomena or theoretical constructs in terms of the properties of
phenomenological mathematical models that describe a cognitive system in more
or less qualitative terms (Kelso, 1995; Thelen & Smith, 1996; Van Geert, 1991).
Others attempt to model minimal embodied systems from the ground-up; such
generative models are not necessarily data-driven but cash out their scientific value
in terms of the study of dynamical patterns observed and by linking these patterns
to existing or new theoretical ideas (Beer, 1996, 2000; Webb, 1995). These two poles,
the descriptive and the generative, define a continuum of dynamical approaches all
of which go beyond the previous use of dynamical metaphors in psychology, (e.g.,
Heider, 1958; Lewin, 1951; Newcomb et al., 1952).

It is now widely acknowledged that investigating psychological phenomena in
the context of situated interaction with an environment makes it possible to explain
aspects of behaviour that are hard to grasp otherwise. This is especially true for
the case of social interaction where two or more individuals are mutually coupled
in perception–action loops. Their interaction can dynamically create phenomena
that do not directly result from the individual capacities or behaviours of any of
the partners if investigated on their own. However, to this date, most dynamical
approaches to problems in social interaction have been located toward the quali-
tative end of the spectrum. Such models are sometimes disembodied in the sense
that material and dynamical aspects of interaction are not taken into account. This
has produced a series of models that concentrate on global patterns of interaction,
(Granic, 2000; Vallacher et al., 2005; Van Geert, 1991, 2005) and consequently tend
to be based on relational and global properties of the interaction process. There has
been, in contrast, much less work in generative and embodied modelling of social
interaction (Di Paolo, 2000; Iizuka & Ikegami, 2004; Quinn, 2001). The classical di-
chotomy between the priority of the social or individual levels of explanation plays
a very practical role in such generative and embodied models, which leads to a fun-
damental theoretical question: If such models proceed first by constructing minimal
individual systems which are only later put to interact socially, are these models not
already committed to some form of methodological individualism? One of our aims
in this paper is to explore this issue and answer this question negatively. We find
that such models are well-suited to expose deeply rooted individualistic assump-
tions in social cognition precisely because they do not start by modelling dynamical
patterns already constituted at the social level. As such, these models may become
essential tools to take up the challenge of investigating the interaction process as
a whole, rather than an individual’s capacities to behave socially in a social sit-
uation, and the dialectics between the individual and social levels of description,
(De Jaegher, 2006).

In this paper, we explore the question of what makes an embodied social interac-
tion distinct from other kinds of sensorimotor engagements with the environment.
Is there anything about the dynamics of the interaction process that generates a
specific temporal pattern that social interactors recognize and keep track of? Does
the continuity of a social interaction depend on an individual’s capacity to recog-
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nize the mutuality and contingency of the coupling? Or are there global dynamical
structures of the whole social process that are sufficient for keeping an interaction
under way?

Empirical evidence, such as Murray and Trevarthen’s double TV monitor ex-
periments and its successors (Murray & Trevarthen, 1985; Trevarthen, 1993; Nadel
et al., 1999), indicates that individuals are not infinitely malleable and adaptable
to the demands of an interaction if their partners do not themselves behave in a
responsive manner. Two-month-old infants are able to interact with their mothers
via a live double video link. However, when shown videos of their mothers gener-
ated during a previous interaction they do not engage in coordinations with the
unresponding recording (which maintains intact the mother’s expressiveness) and
become distressed and removed. This seems to indicate that the recognition by
the infant of the ongoingness and contingency of the interaction plays a funda-
mental role in its unfolding. Early involvement in socially contingent interactions,
and its implied connectedness, plays a fundamental role in the infant’s affective
and experiential development (Tronick, 2004). Sensitivity to social contingency in
two-month-olds is inferred from these results (Nadel et al., 1999). But this phrasing
seems to suggest that such a ‘recognition’ is necessarily performed at the individ-
ual level. And this could be explained by individual-centred theories such as the
postulation of an innate contingency detection module (Gergely & Watson, 1996).
Our objective is to question this implication for the general case by showing how
it is possible for the same results to stem from the rich dynamics of the social
process itself. In this way, a dynamical analysis of minimal social interaction would
bring support to social interactionist perspectives where the dyadic process is seen
in itself as formative of individual social capabilities, (e.g., De Jaegher, 2006; Fo-
gel, 1993; Stern, 2002). A recent empirical study brings some support to the social
interactionist view (Markova & Legerstee, 2006), but the mechanisms involved in
socially contingent affect attunement remain unclear. Our dynamical models in-
tend to uncover some aspects of such possible mechanisms in conditions of minimal
complexity.

We present a series of dynamical simulation models inspired by a recent study
by Auvray, Lenay and Stewart (2006) on the dynamics of human perceptual cross-
ing in a minimal shared virtual environment. This experiment can be seen as a
variant of Trevarthen’s double monitor experiments but simplified to the extreme.
The details of their experiments are described in section 2. This is followed by a
short presentation of the evolutionary robotics methodology used in this work and
a discussion of its benefits and implications for psychology (section 3). In section 4,
we introduce an evolutionary robotics model of the experimental paradigm which
leads to a number of unintuitive insights about the data obtained. A second evolu-
tionary robotics study (section 5) simulates the task in an extended set–up which
again leads to the derivation of new hypotheses. In the conclusion (section 6) we
summarise what the results from our models imply for the debate about dynamical
systems approaches in psychology. We argue that a minimalist methodology, com-
bining empirical psychological experiments and computer simulations, is a fruitful
and promising methodological framework for investigating social behaviour as an
embodied interaction process.
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2. Perceptual crossing through tactile feedback

Auvray et al. (2006) (also Lenay, personal communication, 2006) have investigated
the dynamics of human perceptual crossing in a minimal shared virtual environ-
ment. Two adult subjects, acting under the same conditions, can move a cursor left
and right along a shared one-dimensional virtual tape that wraps around. They are
asked to indicate the presence of the other partner. The subjects are blindfolded
and all they can sense are on/off tactile stimulations on a finger when their cursor
crosses an entity on the tape. Apart from each other, participants can encounter
a static object on the tape, or a displaced ‘shadow image’ of the partner, which
is strictly identical to the partner as regards to size and movement characteristics
(see Fig. 1). All objects are small and of the same fixed size. Subjects are told that
they can encounter a moving object, a static object, and another sensing subject
and are asked to click the mouse button when they think they are scanning the
other subject.

The problem is, therefore, not only to distinguish moving and static entities
along the tape, but to distinguish two entities that move exactly the same way,
only one of which represents the other subject, who can sense the first subject’s
presence and respond contingently to her actions. In this sense, these experiments
are, even though much simpler, analogous to Trevarthen’s experiment: The only
difference between the mother’s behaviour on the monitor between the conditions
is whether she senses the child and reacts to it or not; her expressive behaviour,
i.e., her motion, language, mimics, dynamics, voice etc. are identical between the
two conditions.

[Insert Figure 1]

The results by Auvray et al. show that subjects are, despite the poor sensory
information provided by the minimalist virtual environment, very successful at
solving the task (≈ 70% correct responses) without the need of training. How is
this discrimination achieved? Even though the behavioural patterns for long-term
interaction with objects or subjects vary significantly across individuals and trials,
a frequent strategy adopted initially by subjects is to make oscillatory scanning
movements around any entity sensed on the tape.

A closer look at the data reveals that subjects are not able to make a conscious
distinction between the shadow image and the interacting partner. Sometimes, if
one of the partners scans the fixed object, the shadow image mirrors this scanning
activity, and the other subject can interpret this scanning as oriented towards her.
This is represented by the fact that the relation between caused stimulation and
recognition mouse click response is approximately equal for both actual perceptual
crossing and crossing of the shadow image. In other words, subjects are equally
likely to click their mouse when scanning another subject or her shadow. For both
cases, the amount of clicking is much higher than it is for the crossing of the fixed
object, which seems to be hardly ever mistaken for the other subject.

So, if the movement of a subject and its shadow are indistinguishable, and the
mouse click response occurs with similar probabilities when scanning another sub-
ject or scanning his shadow, how can we explain the 70% successful responses?
According to Auvray et al., the answer lies in understanding the dynamical proper-
ties of the interaction process as a whole. The important issue is that the scanning
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of an entity encountered will only stabilise in the case that both partners are in
contact with each other – if interaction is only one–way, between a subject and the
other’s shadow, the shadow will eventually move away, because the subject it is
shadowing is still engaged in searching activity. Two–way mutual scanning is the
only globally stable condition. Therefore, the solution to the task does not rely on
individuals performing the right kind of perceptual discrimination between different
momentary sensory patterns, but emerges from the mutual perceptual activity of
the experimental subjects that is oriented towards each other.

Interesting hypotheses and further questions can be deduced from these results,
for instance, whether such global dynamical processes, in which none of the indi-
vidual actors can be held responsible for the interactional success, also play a role
in more complex conditions, such as Trevarthen’s double monitor experiments. But
also within this minimal experimental set–up, there are more questions to be asked.
In this paper, we investigate simple simulated robotic agents performing the same
task from a dynamical systems perspective. Due to the novelty of the approach
we must first detour to explain how such purely synthetic findings can enrich the
practice of the experimental psychologist.

3. Minimal cognition and evolutionary robotics

Evolutionary Robotics (ER) is a “technique for the automatic creation of au-
tonomous robots [...] inspired by the darwinian principle of selective reproduction
of the fittest” (Nolfi & Floreano, 2000, preface). The experimenter determines some
aspects of the robot’s or simulated agent’s architecture, but underdetermines others.
These are left to be determined in an automated way by an evolutionary search al-
gorithm, according to the optimisation of an abstract performance measure (fitness
function). For instance, if mobile agents must locate and approach a light source,
fitness could be defined as the proximity to the light source at the end of each test
trial. Initially, all parameters describing the agent’s controller have random values,
typically resulting in low or zero scores for the generated behaviour. However, the
agents that are slightly better than the rest will be selected to generate offspring,
similar to themselves, to feed the next generation of agents. For the case of light-
seeking, for instance, those agents that randomly move a little bit in the direction
of the light will receive a higher score than those that do not move at all. Their
‘offspring’ are again evaluated, and after a number (hundreds, sometimes up to
thousands) of repetitions of this cycle, the population of agents will perform the
desired behaviour, even though the human designer never explicitly programmed
the solution (see figure 2).

[Insert Figure 2]

What is interesting about this method is that the performance criterion does
not directly evaluate the control function of the agent, but its embodied behaviour

within a closed sensorimotor loop. The automated search can exploit aspects of
the complex dynamical interaction between the artificial agent and its simulated
environment, and these solutions are typically the ones that human designers do not
think of when explicitly programming an agent to perform a certain behaviour. For
the case of light seeking behaviour, many solutions are possible and equally viable,
e.g., using one light sensor or many, approaching the light forwards and backwards,
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stopping once there or cycling around it, etc. The evolutionary search can come up
with any of these solutions, while a human designer would only find few of them
intuitive. Indeed, it happens frequently that the evolutionary roboticist finds it
difficult to understand the evolved behavioural solutions. In these cases, a ‘pseudo–
empirical’ investigation of the agents follows in order to explain their performance:
Agents are tested under different psychophysical conditions, internal and external
variables are monitored, the structure of the evolved agent control architecture is
closely examined or altered, etc.

Typically, the systems that are designed in evolutionary robotics are controlled
by continuous-time recurrent neural networks (CTRNNs, (Beer, 1990, 1995)). These
neurocontrollers are particularly useful for dynamical models since they allow the
specification of multiple timescales, from the very fast to the very slow, including
behavioural, learning and developmental timescales in a single neural network (see
appendix).

These models are not strict models in the traditional sense of trying to fit an
empirically generated data set. They serve as tools for grounding and question-
ing preconceptions held about the explanandum, i.e. how a certain behaviour is
generated. Most other methods in artificial intelligence modelling do not include
this explicit self-critical factor. Typically, the models generated with this approach
are deliberately minimal (Beer, 2003; Harvey et al., 2005). The manageable com-
plexity of these models, together with the fact that, in general, all variables and
parameters can be accessed and recorded, makes it possible to fully understand
and explain the dynamics of agent behaviour. Some examples of this methodol-
ogy have recently been applied to modeling animal cognition, (e.g., Vickerstaff &
Di Paolo, 2005). Beer (2003) argues that the minimalism of this method allows
us to perform the necessary mental gymnastics to deal with real, dynamical, and
context-dependent cognitive performance.

But how can artificial systems that are deliberately minimal in complexity and
therefore not even remotely comparable to human beings be of scientific use to
the psychologist? As stated above, these systems should not be seen as models
in the strict sense. They are not models of humans, but they can help to better
understand a very particular and limited aspect of human sensorimotor behaviour.
Experiments with human subjects that focus on particular aspects of behavioural
dynamics, such as the study by Auvray, Lenay and Stewart described above are,
therefore, very suitable for ER modelling. The empirically investigated variables,
sensation and motion on the tape over time, can be fully captured in a simple
simulation, without drawing any conclusions about the relation between structures
that give rise to this behaviour in humans or simulated agents.

4. Modelling perceptual crossing

We propose a model of the original experiment by Auvray et al. which provides a
more thorough understanding of the task. We briefly outline the technical aspects of
our simulation studies, see appendix for technical details. The original experimental
settings are included in the model, i.e., agents can meet a shadow image of the
partner on the tape, the partner itself or a fixed object (all of which have the same
size on the tape).
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The agents can move along one dimension, i.e., to the left and to the right. This
one-dimensional world wraps around. The agents are controlled by CTRNNs. They
have one touch sensor that feeds an on/off signal into the network if they touch
the other agent or any other object located on the tape. The output activation of
the neural network is used to control the left/right movement of the agent. The
parameters and architecture of this recurrent network are evolved with a genetic
algorithm to maximise the performance of the task which is to locate the partner
agent and spend as much time as possible as close to each other as possible while
not being trapped by static objects or shadow images. In this simulation, both
partners are identical, i.e., just a single population of agents is evolved.

When we first tried to evolve agents to solve the perceptual crossing task, the
evolutionary search algorithm was not able to find a satisfactory solution. The
behaviour that evolved was for agents to halt when crossing any object encountered
on the tape, be it the partner, the fixed object or the shadow of the other. Given
the experimental set–up, this is a comparably successful strategy: If agents first
encounter each other, or if one agent runs into its waiting partner, it achieves
perfect fitness, and these are the majority of possible cases. However, it is neither
the optimal behaviour, as in the remaining cases, the agents will not find each other
at all, nor is it a very intelligent or adaptive solution and it does not resemble any of
the strategies adopted by human subjects, who keep actively exploring. Only when
a small time delay between a crossing on the tape and the agent’s sensation was
included into the model (see appendix), the evolutionary search algorithm came up
with an adaptive solution. The trajectories generated by the agents are similar to
those generated by some human subjects (Fig. 3 (C)).

An interesting question arises from these unsuccessful trials: Is the oscillating
scanning movement that most subjects adopt initially related to the existent delays
between sensation and reaction in humans? It seems natural to us that subjects
would adopt a strategy such as oscillatory scanning, however, it is not a priori

necessary, and it even seems like a waste of energy. There are many possible expla-
nations for this behaviour. However, one hypothesis that we can derive from our
model is that sensory delays may play a role in generating scanning behaviour, and
that subjects, possibly, repeatedly cross the partner because of reaction time de-
lays, like the evolved agents do. This hypothesis would predict that the amplitude of
scanning oscillations around a target will be positively correlated with the amount
of sensorimotor delay, which can be tested in further empirical experiments.

[Insert Figure 3]

Taking a closer look at the evolved solution to the task, an interesting obser-
vation is that the discrimination between the shadow image and the other subject
evolves quickly whereas it seems more difficult to evolve agents that can distinguish
another agent from a fixed object. These findings contradict the intuition that the
easier task would be to recognize a static object, while distinguishing two moving
objects, only one of which is in turn responsive, seems much harder, particularly
because their motion characteristics are identical1. A close look at the data from
the simulation model, however, changes the picture.

1 A possible explanation of the apparent ease with which humans distinguish fixed objects

would make use of the invariant correlation that it is possible to build between tactile and pro-

prioceptive sensory input during active scanning. This possibility is also available to the agents
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In the simulation, there is a striking similarity between sensorimotor patterns
for coordinated mutual scanning (crossing) and for scanning a fixed object (Fig.
3 (A) and (B)). Encountering any stimulus makes the agent revert its direction
of movement, which leads to another encounter followed by another inversion of
velocity, and so forth. If both agents engage in this motion pattern, they will always
meet in the middle of their return trajectory. This coordinated activity leads to
sensations and motions changing over time in a way very similar to those that
come about when investigating a fixed object. When we inspect the duration of
the stimulus upon crossing a fixed object, we realise that it lasts longer than when
crossing a moving partner. This is because the fixed object does not move itself.
The solution that the simulated agent adopts simply relies on integrating sensory
stimulation over a longer time period, which yields a higher value for a static object,
i.e., it is sensed as having a larger apparent size. This hypothesis has been tested
and is supported by the fact that the agent is quite easily tricked into making the
wrong decision if the size of the static object is varied, i.e. a small object is mistaken
for another agent — or, likewise, the other agent is perceived as a smaller object.

It is interesting to note that the smaller perceived size in the case of percep-
tual crossing depends on encounters remaining in anti–phase oscillation (figure 3
(A)), which is an interactionally coordinated property (De Jaegher, 2006). A sys-
tematic distinction between objects having the same objective size is therefore co–

constructed by the agents during coordinated interaction. Objects systematically
moving in opposing velocities to the scanning movements will appear smaller in
size. The co-construction of this appearance resides in the systematic opposition of
velocities which is a coordinated relational property of the interaction. In turn, in-
dividuals respond to this emergent coordination by remaining in coordination with
the apparently smaller object.

These simulation experiments do not directly tell us anything about the strategy
humans employ in this task. There are many viable solutions to the task, and it is
rather unlikely that humans use the strategy just described, as it appears rather
specific to the conditions under which the agents were evolved. So what do they
imply? First of all, they demonstrate that an approach that does not just look at the
individual capabilities, but also at phenomena that emerge during embodied and
situated interaction uncovers relevant factors that are easily overlooked otherwise.
A task that intuitively seems difficult, i.e. to distinguish two entities with identical
movement characteristics (the partner and the shadow image), becomes almost
trivial, if the effects emerging from the mutual search for each other are taken into
consideration. This finding already results from the minimal empirical closed loop
experiments by Auvray et al. (2006). On the other hand, the intuitively easy task of
distinguishing a moving entity (the partner) from a static one is indeed non–trivial,
if the emergent effects of interaction, i.e. anti–phase coordination, are taken into
consideration.

Furthermore, this issue is uncovered by the evolutionary robotics simulations
prompts a closer look at the empirical data which already confirms that subjects
spend approximately twice as much time crossing a fixed object (≈ 33% of stim-
ulations) than they do crossing the other subject’s shadow (≈ 15% of stimula-

in the model since the neurocontroller allows for recurrent feedback to be used should evolution

find that this is an advantegeous strategy.
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tions)2. It therefore seems that the distinction that arises from interaction (which
moving object is the partner?) is more efficiently solved than the distinction that
requires subjects to individually succeed in recognition (which object that stays in
my neighborhood is the fixed object?). This empirical finding is compatible with
the implications of the minimal model’s results.

With this global view on the dynamics of perceptual crossing in the investigated
set–up, these insights may seem almost trivial. However, if we had started from the
perspective of the individual and its conscious recognition capacities, these findings
would by mysterious: Why would subjects spend relatively more time scanning the
fixed object if it is so much easier to identify?

5. The dynamics of minimal agency detection

The findings of Auvray et al. point to the dynamics of the interaction process as
the explanation of coordinated crossing between subjects and not to an individual
sensitivity to social contingency. The model presented in the previous section con-
firms this result. What remains unclear is the generality and significance of this
finding. Should we expect interactive dynamical factors to account for differences
of behaviour between other contingent and non-contingent situations? Already in
infants it seems proper to describe the reactions to a pre-recorded social stimulus
as indicators of an individual capacity to discriminate it from live interactions. But
the previous results suggest that the stability of the interaction dynamics may be a
factor which is co-present and possibly constitutive of such an individual awareness
of a non-contingent social situation. However, if – as in the above case of unimodal
perceptual crossing – all that matters is the fact that coordinated interaction is the
only long-term stable dynamical mode, then it seems that the situations where the
social process itself would bear some responsibility for the difference between con-
tingent and non-contingent behaviour would be rare. We can expect multi-modal,
noisy social encounters to have several and time-varying modes of unfolding. In or-
der to further explore this issue, we propose a variation on the above model that will
help clarify the possible role of the interaction dynamics in producing a difference
of behaviour between contingent and non-contingent situations by investigating a
set-up in which the interaction of one agent with another’s nonresponding recording
is unconstrained.

One important difference between the setup investigated by Auvray et al. and
Murray and Trevarthen’s double TV monitor experiments is the simultaneous pres-
ence of contingent and non-contingent sources of stimulation (the other subject’s
sensitive position and its shadow). In this section we present a model where the two
situations are separated into distinct live and replayed interaction phases – a situ-
ation only partially explored in a previous evolutionary robotic model (Di Paolo,
2000). We investigate how embodied agents can establish a live interaction and dis-
criminate this from an interaction with an unreactive agent performing pre-recorded
movements from a previous interaction. The issue we want to test is whether such a

discrimination requires a complex perceptual strategy on the part of the discriminat-

ing agent or whether simpler solutions emerge from the interaction process itself.

2 Even though, as stated above, the crossing of the moving object is much more likely to trigger

a recognition response from the subject.
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We use almost the same settings as in the previous model except for the number
of sensors which is now increased to six in order to allow for more accurate discrim-
ination of the partner’s movements (this would facilitate individual discrimination
strategies if they were to be favoured by the artificial evolutionary process). The
static objects and shadow images are removed (the only perceivable object is the
other partner) and the one-dimensional space is bounded to the left and right with
walls. A schematic view of the set-up is shown in Fig. 4.

[Insert Figure 4]

As before, agents are controlled by a CTRNN, all parameters of which are
artificially evolved. If both partners were evolved from a single population, we
would be exploring the special case of an interaction between twinned partners. To
avoid this, partners are co-evolved by using two populations of agents (one labeled
the top agent and the other the bottom agent). The fitness is calculated on the basis
of two factors. The first is how many times the agent can cross its central position
with that of a live interacting partner (live interaction). The other is how much the
agent can stay away from a dummy, non-contingent partner which only replays the
motions of its partner as recorded in the live stage (one-way interaction). Agents
retain no memory after either test. In this way, the motions of the dummy and
the live agents are the same and the situation resembles that of the double TV
monitor experiment. In our current settings, only the bottom agent is required to
discriminate the live interaction from the one-way interaction. Therefore, the top
agent is evaluated only with respect to the first factor (it always tries to engage in
coordinated crossing). For the bottom agent, the fitness is calculated by averaging
the first and second factors. (See appendix for technical details.)

Evolved agents successfully discriminate between the two conditions. Figure 5
shows the movement trajectories for both agents (live interaction) and the move-
ment of the bottom agent when starting from a different initial position and in-
teracting with the recording of the top agent (one-way interaction). At the start
of the interaction, the bottom agent behaves similarly in both cases. During this
phase, the positions of the agents cross rarely and both move towards one of the
walls. Afterwards, in the live interaction, the crossing coordination is established by
the bottom agent moving away from the wall a little, while the top agent oscillates
around the position of the bottom agent. The top agent ‘catches’ this movement
of the bottom agent and provokes a return to the wall through its oscillatory in-
teraction. By contrast, in the one-way interaction case, a slight difference of the
timing of the movement away from the wall is enough for the recorded trajectory
of the top agent not to be able to ‘respond’ in time to ‘catch’ the bottom one. This
event causes the breakdown of the coordination and the lack of mutuality in the
interaction makes this breakdown irrecoverable.

It is also found that the same divergence of behaviour happens even if the
initial positions (and neural states) of the bottom agent are exactly the same in the
live and one-way interaction, since slight differences in trajectories due to sensor
noise accumulate. The performance of the agents is robust to noise during live
interaction and they can sustain coordinated behaviours, while this is not the case
for a single agent in the one-way interaction and this causes the coordination to
break down eventually. The evolutionary algorithm has found a solution where the
mutual coupling results in a feedback loop where coordination (crossing) is robust
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to perturbations. But, the feedback is broken in the one-way interaction and so the
lack of robustness itself causes a behavioural change that ends up in the bottom
agent moving away from interaction. To support this hypothesis figure 6 shows
the stability of the coordinated behaviours in the case of both live and one-way
interactions as a function of the level of sensor noise. It is clear that the noise can
be filtered out when both agents interact – resulting in sustained coordination –
but its effect on movement is amplified and breaks the coordination in the one-way
interaction.

[Insert Figure 5]

[Insert Figure 6]

This simple model answers our question. It is sufficient to exploit dynamical
properties of the mutuality of live interaction, such as increased robustness to noise
and timing differences, to produce a different behaviour in the case of a one-way
interaction. The results suggests that the recognition of social contingency needs not
lie in complex cognitive individual modules able to integrate past information, but
rather in the situated ongoingness of the interaction process itself, in its dynamic
landscape, and its robustness to perturbations.

6. Discussion

Social contingency is a relational condition, and its perception requires the eval-
uation of not just the patterns of expressive action of a partner, but also of how
these relate to our own actions. How would it otherwise be possible for infants to
distinguish a live interaction with their mothers from a recording of a previous one?
The perception of social contingency is therefore the appreciation of an inherently
interactive property of a dynamical process of reciprocal causality. This fact has
not stopped the proposal of descriptions and explanations of such perceptual ca-
pacities in terms that are more individualistic than properly interactive. Infants
in the double TV monitor experiments are described as themselves being sensitive
to social contingency (Nadel et al., 1999), as if the right comparisons, associations
and inferences could only be made by innate computational modules in the infant’s
head. The problem of this situation is that such individualistic explanations are
currently not properly balanced by an exploration of alternative hypotheses that
put the dynamics of the interactive process in a more central role. Despite empirical
support for social interactionist alternatives (Markova & Legerstee, 2006) properly
social mechanisms are not often put forward as explanations of contingency. One
of the reasons for this may partly be because the dynamical systems tools that are
necessary to explore the space of rich, multi-timescale, polyrhythmic, multi-modal
interpersonal interactions are still under development. Hence our focus on exper-
iments and models that minimize complexity. Not because they will necessarily
uncover all the relevant theoretical insights required to understand the more com-
plex natural situation, but because they open up the space of explanations available
and (in the spirit of Beer’s (2003) minimal cognition) they demand the engagement
with the right kind of ‘mental gymnastics’.

In order to go beyond paying lip-service to the relevance of interaction and feed-
back, our models show in concrete terms what aspects of the interaction dynamics
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are responsible for the response to social contingency. The perceptual crossing model
supports the explanation proposed by Auvray et al. Participants in the empirical
study were unable to distinguish between responsive partners and their shadows in
terms of the pattern of sensory inputs. And yet, since shadows do not remain on
the spot for long, the only global stable mode is when partners are crossing each
other, a discrimination that arises from interaction with similar ease in our sim-
ulation model. But the results also uncover non-trivial possibilities regarding the
discrimination between live partners and fixed objects in terms of co-constructed
modulation of perceived size. This, again, demonstrates, how a socially coordinated
dynamic pattern results in a change to individual perception. In particular, we hy-
pothesize that, in the human experimental data, whenever a subject is making a
decision to remain in interaction with an object or discard it as a static one, one
of the predictors for this decision will be the total time of previous stimulation
(i.e., the integrated apparent size of the object). A global view of the interaction
process allows us to formulate this prediciton since such a view provides access to
phenomena and variables that are too easily overlooked otherwise.

The second model reproduces the experimental setting of live vs. recorded in-
teractions more closely whilst maintaining minimalism. Consequently, it enables
the exploration of other social dynamical explanatory factors: The stability of the
mutual feedback against perturbations of timing and noise, and the active co-
construction of an interaction process that is sensitive to social contingency. The
self-correcting aspects of the interactive process simply break down for an agent
that interacts with a recording. Under these circumstances, it is simply unneces-
sary to evolve an individual contingency recognition strategy, the social process
takes care by itself of inducing the individuals to produce the right behaviour.

In both our models, discrimination between contingent and non-contingent sit-
uations is achieved through the social process in the ongoingness of the interaction.
The dynamics of interaction are not simply the data that an individual must evalu-
ate, but are the evaluation process itself. There is no a priori reason, at the moment,
to assume that explanatory possibilities have to be either strictly individual based
or strictly socially modulated. Possibly, many appropriate explanations for socially
interactive processes incorporate both factors and, thereby, lie somewhere along
a spectrum, defined by strictly individual evaluation of interactive information at
one end and purely social modulation of individual dynamics on the other. What is
called for is a methodology that would allow to map this spectrum by 1) determin-
ing the dynamical properties of coordination present in a given social interaction
and 2) generating hypotheses regarding their contribution to the observed social
behaviour. Such tools would also allow the exploration of the mutual shaping (as
well as the tension) between individual and social dynamics as an intrinsic source
of de-stabilization of coordination. A concrete prediction generated by this work is
that interactive factors affecting coordination may be uncovered by their signature
response to controlled perturbation methods. The expected robustness to noise for
those coordinations that stem from social dynamics would be qualitatively closer
to that indicated by figure 6.

The combination of empirical studies and simulation models illustrates how both
methods can inform each other: A psychological study is modelled in a computer
simulation, which increases our understanding of the data obtained thanks to the
less prejudiced design afforded by the evolutionary robotics methodology. From
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these results, an extended version of the experiments is generated, which is first
investigated in simulation, leading to refined hypotheses and ideas. These ideas
will subsequently be tested in empirical psychological experiments. The typical
complaint when confronted with artificial models of the dynamics of psychological
process is that of the gross gap in complexity between the model and the modelled
situation. This problem is solved in this work by pairing up an empirical experiment
and a computer model that both deliberately strive for minimalism, in the spirit
of keeping the dynamics of the investigated behaviour tractable. The fact that
even such minimal models lead to unintuitive findings speaks for the dynamical
complexity of the subject matter and the usefulness of the approach. We argue
that such two way interaction between minimal dynamical simulation models and
minimal dynamical psychological experiments is likely to be fruitful for a larger
class of scientific problems.
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Appendix: Technical details

(a) Continuous-time recurrent neural network

A neuron i in a CTRNN is governed by the following continuous-time differential
equation:

τiẏi = −yi +

N∑

j=1

wjizj(yj) + Ii, zi(x) = 1/(1 + e−x−bi),

where yi represents the cell potential, zi is the firing rate, τi is its time constant
(modulating the speed of response of the node), bi is a bias term, and wji is the
strength of the connection from the neuron, j, to i. Ii represents the sensory input,
which is given to only sensory neurons. The number of neurons is given by N .

(b) Details of the model in Section 4

A generational genetic algorithm with truncation selection (1

3
) and a real valued

∈ [0, 1] genotype with vector mutation(Beer, 1996) is used. The agents and all other
objects have a size of four units, the tape size is 600 units. The CTRNN controllers
that has four input neurons, corresponding to four neighbouring binary touch sen-
sors, up to 5 hidden neurons and two motor neurons for left and right movement.
The motor neurons are treated as hidden neurons apart from the fact that they
generate the motor values, i.e., input neurons can connect to them directly and
they can form recurrent connections with themselves or other hidden neurons. The
parameter ranges are bi ∈ [−3, 3], τ ∈ [20, 3000] (in timesteps), and wji ∈ [−8, 8].
τ is mapped exponentially from the genome value ∈ [0, 1] to the target range, the
other parameters where mapped linearly. The network structure is partially evolved
(step functions x > 0.7 and x > 0.6 decide about the existence of connections and
hidden neurons respectively). A sensory gain SG and a motor gain MG where also
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evolved, both of which where mapped exponentially to the range [1, 100]. Agents
are tested against clones of themselves using a weighted fitness average over six
trials. The fitness criterion is the average distance from the other

F =
1

T

T∑

0

1 −
d(t)

300
.

The sensory delay used was 50 time steps. The trials lasted T ∈ [8000, 11000] time
steps.

(c) Details of the model in Section 5

The CTRNN used here consists of 10 neurons, including 6 input and 2 output
neurons. All neurons are fully connected. The range of all parameters are set to
bi ∈ [−3, 3], τ ∈ [1, 100], and wji ∈ [−8, 8], respectively. These parameters are
evolved using a rank-based genetic algorithm with elitism. In order that the top and
bottom agents can acquire different behaviour strategies, we used a co-evolutionary
system which has 2 populations, which are assigned to top and bottom agents. Each
population consist of 20 agents, which are evaluated on the basis of the results of all
20 × 20 combinations between populations. Only vector mutation operators (Beer,
1996), which adds a small random vector to the real-valued genotype, are used.
The best 6 agents of the population are retained and the others are replaced by
the agents with mutation which are selected from the original populations based
on a fitness. The different fitness fuction, F 1 or F 2, is given to each population as
follows.

F 1

i =
1

20

20∑

j=1

#Cross(a1

i , a
2

j ) × (20 − #Cross(a1

i , Record(a2

j )))

F 2

i =
1

20

20∑

j=1

#Cross(a1

j , a
2

i )

where #Cross(a1

i , a
2

j ) represents the number of crossing in the interactions between

agents, a1

i and a2

j , but the maximum number is set to 20 in order to avoid unrea-

sonable oscillation. Record(a2

j ) means the recorded motions of agent, a2

j . Therefore,

the more agent a1

i crosses with the recorded motions, the less the fitness become.
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Figure captions

Figure 1: Schematic diagram of the one-dimensional environment in perceptual crossing
experiment.

Figure 2: Illustration of the evolutionary cycle in evolutionary robotics.

Figure 3: Results from evolved model. (A) Stabilised perceptual crossing (trajectories
and sensorimotor values). (B) Scanning of a fixed object (trajectories and sensorimotor
values). (C) The trajectories are very similar to those generated by human subjects (lighter
lines: shadows/static objects). All diagrams include motor noise.

Figure 4: Schematic view of the environmental settings. The agents can move horizontally
and sense a body of the other agent with six arrayed tactile sensors.

Figure 5: Trajectories of agents over time. The dotted and thick solid lines show the
trails of the top and bottom agents in the live interaction, respectively. The thin solid line
shows the trails of the bottom agent when it interacts with the nonresponding recording
which replays the dotted line.

Figure 6: Stability of coordinated behaviours against noise strength. The average number
of crossing over 100 trials with random initial positions is shown. The solid line and the
dotted line represent the cases of the live and the one-way interaction, respectively.
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